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Nomenclature

Einstein notation is used extensively throughout this report to imply summation over re-
peated indices, primarily for multiple directions in integral equations. Indices are also used to
denote chemical species in a gas mixture. When dealing with notation for chemical species,
Einstein notation is not implied. When summation over chemical species is required, we will
use a summation operator.

English Character Symbols

C, mixture specific heat at constant pressure

D mass diffusion coefficient

D, mixture-averaged mass diffusion coefficient for species ¢

D;; mass diffusion coefficient between species ¢ and j in a mixture
E law of the wall parameter, turbulence model

fe mass fraction of "excess" carbon in a given species (over what may for CO2 from the
available oxygen in the species)

G scalar radiative flux
g magnitude of the gravity vector
Ji component of the gravity vector in the x; direction

h mixture enthalpy

h fuel pool depth

Jirg mass diffusion flux vector for species ¢ in the z; direction
fuel heat of vaporization

number of chemical species in a mixture

K

k mixture thermal conductivity
k turbulent kinetic energy

L

length scale
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~ ™~

=2 =2 =

3

T

S;

integral scale with respect to turbulence

characteristic length scale of the products

mass flow rate

mass

concentration of soot particles per volume

concentration of radical nuclei per volume

unit normal vector component in the x; direction

pressure

thermodynamic pressure

heat flux vector component in the x; direction

soot/radical-nuclei particle production/consumption rate per volume in a cell

universal gas constant

species mass production/consumption rate per unit volume in cell

position vector

unit direction vector for radiation transport

ratio of air mass fraction to fuel mass fraction

source term for scalar variable ¢
time

temperature

velocity component in the x; direction

velocity component in the z-direction

friction velocity, turbulence model

velocity parallel to the wall, turbulence model

dimensionless velocity, turbulence model

velocity component in the y-direction

volume of the computation cell (control volume)

velocity component in the z-direction
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|44 mixture molecular weight

T Cartesian coordinate direction

X, mole fraction of species s

Y, mass fraction of species s

yt+ dimensionless distance from wall, turbulence model

Greek Character Symbols

« absorptivity

I} concentration of radical nuclei per mixture mass
& mole fraction of carbon available to produce soot
X weighting function for the reacting portion of the fine structure
A scalar difference

0ij identity matrix

€ total normal emissivity

€ dissipation of turbulent kinetic energy

0 spherical direction angle for radiation transport
10) generic scalar quantity

) equivalence ratio

v volume fraction of turbulent fine structures

y coefficient of surface tension

i Kolmogorov dissipative turbulent length scale

K emittance

K thermal conductivity

K von Karman constant, turbulence model

A Taylor turbulent length scale

W viscosity
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v kinematic viscosity
P mixture density

p reflectivity

o Stefan-Boltzmann constant

0ij deviatoric plus pressure stress tensor

T characteristic time scale

T transmissivity

Tij viscous stress tensor

v Kolmogorov dissipative turbulent velocity scale
¢ stoichiometric coefficient

Superscript Character Symbols

n iteration or time step number

r indicial notation for reaction number

~

fluctuating quantity with respect to time average
" fluctuating quantity with respect to Favre average
normalize by stoichiometric values

time rate of change of a variable

Favre-averaged quantity

* value for the turbulent fine structure in a cell

o value for the surrounding structure in a cell

time-averaged quantity
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Subscript Character Symbols

air property associated with air

az azimuthal angle

cell property associated with a control volume

co stoichiometric reaction with CO and H2 products

co2 stoichiometric reaction with CO2 and H20 products, also a property associated with
CcO2

D property associated with diluents

flame property associated with flame zone
fuel property associated with fuel
g indicial notation for gas-phase chemical species

h2o0 property associated with H20

i indicial notation for component of a vector or tensor
inc incident quantity

J indicial notation for component of a vector or tensor
k indicial notation for chemical species

min minimum limiting value

mix mixture property

n number of hydrogen atoms in the fuel molecule

n2 property associated with N2
oxy property associated with O2
P number of nitrogen atoms in the fuel molecule

prod property associated with products

q number of oxygen atoms in the fuel molecule

rad property associated with radiation

reac associated with a specific chemical reaction (77)
res fine structure residence
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soot property associated with soot

stoich stoichiometric composition

surr property associated with the surroundings
t turbulent quantity

w wall value

zn zenith angle

Dimensionless Groups

Pr Prandt]l number, the ratio of viscous and thermal diffusivities
Re Reynolds number, the ratio of inertial and viscous forces
Sc Schmidt number, the ratio of viscous and mass diffusivities
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Chapter 1

Introduction

The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radi-
ation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key
elements of the ASCI fire environment simulation project. The fire environment simulation
project is directed at characterizing both open large-scale pool fires and building enclosure
fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer,
mass transfer, combustion, soot, and absorption coefficient model portion of the simula-
tion software. Syrinx represents the participating-media thermal radiation mechanics. This
project is an integral part of the SIERRA multi-mechanics software development project.
Fuego depends heavily upon the core architecture developments provided by SIERRA for
massively parallel computing, solution adaptivity, and mechanics coupling on unstructured
grids.

1.1 Abnormal Thermal Environments

Fuego/Syrinx is part of a suite of numerical simulation tools used to address abnormal
thermal environments for nuclear weapon systems [1|. From manufacture to disassembly,
a weapon will see three types of environments: normal, hostile, and abnormal. Abnormal
environments result from natural phenomena, such as fires, floods, tornadoes, earthquakes,
lightning strikes, meteor strikes, etc., and human phenomena, generally classified as “acci-
dents". In general, these phenomena can present thermal, mechanical, and electrical hazards
to a weapon system. Nuclear weapon systems must respond to these abnormal environments
in a deterministically safe manner.

Fire phenomena in the context of the abnormal thermal environment weapons response
issue is part of a three stage process leading from an accident to the system response. For
certain scenarios, these stages are uncoupled and may be sequential in time; in others, the
stages are tightly coupled and concurrent in time.

The first stage is the initial accident or environmental scenario that is defined typically
through probabilistic studies such as historic data involving accident frequencies of a given
type, ignition probabilities, etc. These are used to define scenarios for deterministic simula-
tion tools that determine the state of integrity of the weapon system and the distribution of
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fuel. The weapon integrity is determined by the mechanical, transient-dynamic environment
it sees during an accident. For accident scenario description, Fuego is intended to handle the
distribution of liquid fuels, although initial implementation will be somewhat limited due
to the very broad possibilities (e.g., fuel pools, spills, sprays, porous flows) and complexity
involved in two-phase flow.

The second stage is the actual buoyant, turbulent, reacting, flow that is the source of the
thermal hazard for the weapon system. Fuego and Syrinx are the primary tools that describe
the fire phenomenology that links an accident description to thermal radiation and convection
on a weapon system. Fire involves a very complex, coupled set of physical phenomena over
a very broad range of time and length scales. The key features are the turbulent, buoyant
flows involving combustion of the fuel and air, and the formation of soot which results in
participating media radiation (Syrinx), and a range of convection heat transfer conditions
from free to forced convection (Fuego).

The third stage is the weapon thermal response. As with the fire itself, the response
of the warhead to a fire is described by very complex, coupled set of physical phenomena.
Simulation will require the coupling of several, separate effects codes for a complete descrip-
tion. Heat from the fire is conducted into the weapon and transmitted by surface-surface
radiation. Materials such as foams decompose and result in pressurization. Conduction
across engineered joints is pressure dependent as is the decomposition process. Materials
such as aluminum can potentially melt and relocate. Energetic materials can decompose
and react. Within this environment the engineered fail-safes in the weapon electrical system
must operate with high reliability to ensure nuclear safety.

Because of the number of physical phenomena involved from the accident scenario to
the weapon response for abnormal thermal environments, and the very disparate time and
length scales over which these phenomena occur, it is necessary to have high-performance,
massively-parallel, computers to even consider addressing a problem of this scale and com-
plexity. Further, the key to integrating this suite of tools is flexibility of coupling and a
common database architecture. Thus it is intended that all the simulation requirements
identified above will ride on a common software architecture (SIERRA) with broad coupling
flexibilities.

The principal value of the suite of numerical simulation tools is not the description
of the accident to response process, but the ability to evaluate prevention and mitigation
design strategies. Preventative strategies are primarily applied via administrative controls.
Examples include design and maintenance to minimize fuel levels, separation of fuels from air
and ignition sources, and/or weapons separate from the combination. Mitigation strategies
include suppression (either manually through fire-fighters or by automated fire suppression
equipment), design of thermally activated fail-safes, and containment design. In general,
multiple barriers exist between fire and health consequences to the general public for nuclear
weapons.
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1.2 Deliverables

The requirements for Fuego Version 1.0 are described in the Strategic Plan [2] and are
summarized as follows:

e Customer Applications

— Weapons Designers

* Weapons Designers (all phases)
x Weapons Safety Certification

— Facilities Safety

* Prevention Strategies Design/Assessment
* Mitigation Strategies Design/Assessment

— Nuclear Safety

x Weapons Safety Assessments

% Abnormal Thermal Environments Scenario Assessment
e Scenarios

— All credible accident scenarios involving fire that can occur from creation to dis-
assembly of any of our nuclear weapon systems.

e Priority Scenarios

— open hydrocarbon pool fire without wind
— open hydrocarbon pool fire with wind

— facility /enclosure with a hydrocarbon fuel fire
e Required Output: Radiative and Convective Heat Flux

— Resolution requirements

* length scale: O(0.1 m)
* time scale: O(10 s)

— Uncertainty requirements

* uncertainty estimates are a required part of an analysis
* range from qualitative analysis to “as low as achievable"

* tolerance: early phase design > late phase design > certification
e Math Model Requirements
— Grid-Resolved Models: All Favre-averaged (RANS)

* mass conservation, variable density

23



*

*

species conservation (7 gas equations, 2 soot equations)
momentum conservation (3 equations)

energy conservation (low Mach number approximation)
participating media radiation (number of equations ?)
turbulence model (2 equations)

— Sub-Grid Models

*

*

*

*

wall functions for momentum and heat transfer
sub-grid turbulent mixing for combustion, soot, and radiation (EDC)
combustion chemistry and thermochemistry (EDC)

soot and precursor formation (EDC)

— Material Models

*

*

*

radiative emission/absorption properties
transport properties for momentum, energy, and species
ideal gas law and thermally perfect thermodynamic properties

— Fuel Sources

*

liquid hydrocarbon pools

e Computational Requirements

— Compatibility with SIERRA Frameworks

*

*

*

*

coupled-mechanics (turbulent combustion, participating media radiation, heat
conduction)

massively parallel
distributed memory
unstructured grid, O(10®) elements

— Numerical Methods and Solvers

*

*

*

*

proven technology — guaranteed convergence (first-order accurate methods,
time and space)

3D, control volume, finite element method (CVFEM)

transient (but only for time scales long relative to turbulent fluctuation time
scales)

flexible coupling between math models (linearization and segregation)

e Problem Solving Environment Requirements

— Preprocessing for large data sets

— Diagnostics/Postprocessing for large data sets

*

*

sensitivity coefficients

virtual measurement comparison; i.e., thermocouple
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— Version control
e Verification Requirements

— Guidelines

— Truncation error analysis for all operators
— Regression testing during development

— Unit testing for major program elements

— Verification testing to establish correct implementation
e Certification Requirements

— Analyst training program

— Review and approval process
e Documentation Requirements

— Implementation Plans for development
— Theory Manual

* math models

* numerical methods

* solution strategies
— User Manual (input syntax and definitions)
— Verification Suite

* Truncation error

* Regression tests

Unit tests

* Verification tests

*

The following definitions describe the release schedule:

e Fuego a — math models are in place and a fire problem is demonstrated by the devel-
opment team

e Fuego [ — code verification is sufficiently complete that the code can be released to a
small group of “friendly" users; i.e., analysts working on simulation validation

e Fuego 1.0.0 — code is released with documentation and defect tracking
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1.3 Document Organization

This document contains theory and implementation details for the Fuego code. A discussion
of the physical models and governing transport equations (math models) is given in Chap-
ter 2. A discussion of the numerical methods that we use to solve the governing transport
equations is given in Chapter 3. Implementation details regarding the SIERRA Frame-
works are described in Chapter 4. Future math model improvements are discussed in the
appendices.

The Einstein notation of repeated indices is used extensively throughout this document.
The only exception is for equations involving chemical species where an explicit summation
operator is used to imply summation over all chemical species.
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Chapter 2

Math Models

Fire simulation requires the solution of variable property, high Grashof number, turbulent,
low Mach number flow including the effects of species and soot transport, radiation, and
buoyancy. Figure 2.1 shows the relation and interconnectivity of the math models as a
function of physical conservation law and length scale.  Conservation laws include mass
of the mixture, momentum, mass of the individual species, and energy. Length scales vary
from molecular to convection dominated. For purposes of discussion, length scales are also
categorized by the method of resolution.

The transport equations used to describe fire physics are based on two sets of approxima-
tions to the fundamental equations of fluid dynamics. Fast acoustic time scales are removed
from the equations using low Mach number asymptotics, described in Section 2.1. Tur-
bulent transport at high Grashof numbers is modeled using a Reynolds averaging approach,
described in Section 2.4.1.

In what follows, we note that unless specifically stated otherwise all units in the equa-
tions and submodel expressions are cgs. For a more extensive treatment of units and unit
conversions in Fuego, please see the “Units and Unit Conversions” section in the User’s Man-
ual. The numerical methods we use to solve the transport equations are of the finite volume
class. Therefore, we generally write the transport equations in the integral form.

2.1 Low Mach Number Equations

The low Mach number equations are a subset of the full compressible Navier-Stokes (and
continuity and energy) equations, admitting large variations in gas density while remaining
acoustically incompressible. The low Mach number equations are preferred over the full
compressible equations for our problems of interest. We avoid resolving fast-moving acoustic
signals which have no bearing on the transport processes. Derivations of the low Mach
number equations are found in Rehm and Baum (3], Paolucci [4], Majda and Sethian [5],
and Merkle and Choi [6]. The equations are derived from the compressible equations using
a perturbation expansion in terms of the lower limit of the Mach number squared; hence the
name. The asymptotic expansion leads to a splitting of pressure into a spatially constant
thermodynamic pressure and a locally varying dynamic pressure. The dynamic pressure
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global energy balance.

2.1.1 Asymptotic Expansion

The thermodynamic pressure can vary in time and can be calculated using a

The asymptotic expansion for the low Mach number equations begins with the full com-
pressible equations in Cartesian coordinates. The equations are the minimum set required
to propagate acoustic waves. The equations are written in divergence form using Einstein

28



notation (summation over repeated indices):

@ Opu;
ot a$j
apuz 8pujul oP aTij

_ 2.2

ot " oz, o _ oz, "7 (22)
8,0E 8pujH 8qj 8um]

_ 2.3

ot oa, oz; | oz, TP (2:3)

The primitive variables are the velocity components, wu;, the pressure, P, and the temperature
T'. The viscous shear stress tensor is 7;;, the heat conduction is g;, the total enthalpy is H,
the total internal energy is F, the density is p, and the gravity vector is g;. The total internal
energy and total enthalpy contain the kinetic energy contributions. The equations are closed
using the following models and definitions:

P = p—T 2.4
PW )
E = H-P/p, (2.5)
1
H = h+ §ukuk, (2 6)
Ou;  Ou; 2 Ouy
Tid a <6xj (‘91‘2-) 3" Oy (2.7)
oT
= —k—. 2.
g o, (2.8)

The mean molecular weight of the gas is W, the molecular viscosity is u, and the thermal
conductivity is k. A Newtonian fluid is assumed along with the Stokes hypothesis for the
stress tensor.

The equations are scaled so that the variables are all of order one. The velocities, lengths,
and times are nondimensionalized by a characteristic velocity, U, and a length scale, L.
The pressure, density, and temperature are nondimensionalized by P, ps, and T,,. The
enthalpy and energy are nondimensionalized by C), T . Dimensionless variables are noted
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by overbars. The dimensionless equations are:

op  Opu;
et = 0 2.9
of o, ! (29)
Ot | Oputs L OP - 107y 15 (2.10)
ot 0z, ~yMa* 0z; Re 0z; = Fr;

oh ol h 1 1 9g; —10P
Orh | Opuh 1L 106 v 1OF (2.11)

ot 0z, Pr Re 0z; v Ot

i 7—1Ma28aﬁij+__7—11\/1a2

Yy Re 8ij P Y FI'Z'
Y — 1 2 aﬁﬂkﬂk 0ﬁa3akﬂk
— M = .
2 ( ot T oz,

The groupings of characteristic scaling terms are:

(o] OOL
Re = &, Reynolds number, (2.12)
[hoo
C1p<><>pJoo
Pr = }{:—, Prandtl number, (2.13)
u? h
Fr, = gz’ Froude number, g¢g; # 0, (2.14)

/ 2
Ma = ﬁ%, Mach number, (2.15)

where 7 is the ratio of specific heats.

For small Mach numbers, Ma < 1, the kinetic energy, viscous work, and gravity work
terms can be neglected in the energy equation since those terms are scaled by the square
of the Mach number. The inverse of Mach number squared remains in the momentum
equations, suggesting singular behavior. In order to explore the singularity, the pressure,
velocity and temperature are expanded as asymptotic series in terms of the parameter e:

P = Py+ P+ Pé ... (2.16)
’I_Li = aip -+ ﬂl"lﬁ -+ 1_L2'7262 Ce (217)
T = T0+T1€+T2€2... (218)

The zeroeth-order terms are collected together in each of the equations. The form of the
continuity equation stays the same. The gradient of the pressure in the zeroeth-order mo-
mentum equations can become singular since it is divided by the characteristic Mach number
squared. In order for the zeroeth-order momentum equations to remain well-behaved, the
spatial variation of the Py term must be zero. If the magnitude of the expansion parameter
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is selected to be proportional to the square of the characteristic Mach number, e = YMa?,
then the P, term can be included in the zeroeth-order momentum equation.

1 0P 0 1 - € - 0
- 7 = P, —P )=
MaZ 0z, Gmi( G v ) 9

— P, P+ ... 2.19
7Ma2 7 a2 <1+6 2+ ) ( )

L

The form of the energy equation remains the same, less the kinetic energy, viscous work
and gravity work terms. The F, term remains in the energy equation as a time derivative.
The low Mach number equations are the zeroeth-order equations in the expansion including
the P, term in the momentum equations. The expansion results in two different types of
pressure and they are considered to be split into a thermodynamic component and a dynamic
component. The thermodynamic pressure is constant in space, but can change in time. The
thermodynamic pressure is used in the equation of state. The dynamic pressure only arises
as a gradient term in the momentum equation and acts to enforce continuity. The unsplit
dimensional pressure is

P = Py, + yMa®P, (2.20)

where the dynamic pressure, p = P — P, is related to a pressure coefficient

- P-P
Pl _ 2th
pOOuoo

Pu. (2.21)

The resulting unscaled low Mach number equations are:

% ?;j = 0, (2.22)

8;? 8’32% + gi = g;j +(p = po) 9i; (2.23)
where the ideal gas law becomes

Py, = p%T. (2.25)

The hydrostatic pressure gradient has been subtracted from the momentum equation, as-
suming an ambient density of p,. The stress tensor and heat conduction remain the same as
in the original equations.

2.1.2 Variable Thermodynamic Pressure

For a low Mach number set of equations, the time derivative of pressure can only be nonzero
in a closed volume with energy addition or subtraction. Relaxing the low Mach number

limit allows a time and spatially varying pressure to appear in the energy equation (see
Section 2.2.3).
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2.2 Laminar Flow Equations

Laminar transport equations are not used for fire problems, but they are important for other
classes of problems such as manufacturing. The low Mach number approximation is assumed
(see Section 2.1).

2.2.1 Conservation of Mass

The mass conservation equation of a mixture of gases is given by

/%dV%— /pujnde =0, (2.26)

where u; is the mass average velocity of the mixture [7].

2.2.2 Conservation of Momentum

The conservation of momentum equations are given by

/8g;idv+/Puiujnde+/PnidS: /Tijnde‘l‘/(p—po)gidV, (2.27)

where the viscous stress tensor is

L _ 2 G 2.2
T = H <8xj + 8@-) 3" 0xp % (2.28)

The pressure, P, in the momentum equations deserves a special note as this quantity can
represent either the dynamic, i.e., the second term in the Mach number expansion in the
case of the low Mach number assumption, or the static pressure in the case of formally
compressibility. In either case, as shown above the hydrostatic pressure gradient has been
removed which gives rise to the far-field density, p,, in the buoyancy body force. Optionally,
we allow for the following sets of buoyancy models:

1) a Boussinesq buoyancy approximation where the density difference is approximated as

(p—po) = —% (T -1T), (2.29)

2) a standard buoyant model in which case the pressure above does include the hydrostatic
pressure and the buoyancy right-hand-side source term is,

PYi, (2.30)
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3) A Boussinesq approximation for a binary mixture in which case the right-hand-side

contribution is:
1 1

_ _yrefl
i MWZ) Vi =Y g, (2.31)

The user is referred to the Fuego user manual for exact line commands for each of these
buoyancy options.

pM wret <

Note that zero pressure is almost always a convenient initial condition for a low Mach fluid
flow. However, in cases without buoyancy, it can be anything, as the value only defines the
additive constant for the pressure solve. However, one must ensure that the value matches
for both initial and boundary condition specifications.

For buoyant flow, specifying zero pressure is convenient in tandem with the “differential”
buoyancy option. This buoyancy term subtracts off the hydrostatic contribution such that
the source term is written as

p(p— pres) (2.32)

One can see that using this term along with a zero pressure initial condition allows one
to avoid specifying initial and boundary conditions as the hydrostatic pressure, i.e., as a
function of height.

2.2.3 Conservation of Energy

The conservation of energy equation in terms of enthalpy (including a source term due to
radiation absorption and emission) is

dph oq;
oP oP ou;
- —\|d e | 2.
* /(875 ”faxj) V+/T”azj Y (2:33)

where the energy diffusion flux vector is given by

or

K
q; = —/ia— Zﬂthkﬁj,k; (234)
Y=

and 1, is the diffusion velocity of species k in the j direction. This form of the energy
equation is derived by starting with the energy equation and supplemental relationships of
internal energy and total enthalpy provided in Section 2.1.1. The time term and convection
term due to kinetic energy are expanded using the chain rule and simplified by enforcing
the continuity equation. The remaining kinetic energy terms and gravitational force term
are removed by dotting velocity with the momentum equation (to obtain the mechanical
energy equation) and subtracting it from the energy equation. This procedure provides the
full material derivative of pressure and the expanded viscous dissipation term. The last two
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terms of Equation 2.33 are only active when formal compressibility (in an acoustic sense)
are important (see the Fuego user manual for the appropriate command lines to activate the
low speed compressible and high speed compressible form in Fuego).

For a low Mach number flow, the time derivative of the pressure appearing above is sub-
stituted by the thermodynamic reference pressure, P, that can only be nonzero in a closed
volume with energy addition or subtraction. However, the low Mach number approximation
mandates that the thermodynamic pressure is always spatially uniform.

The enthalpy of the mixture, h, is a mass-average of the component enthalpies, hy, given

by
K
h=>Y Y. (2.35)
k=1

The energy diffusion flux vector includes a scaled gradient of temperature whereas the
independent field to be solved in Equation 2.33 is enthalpy. The form of the gradient of
temperature is derived by first taking the gradient of Equation 2.35 and using the chain rule,

Ohy, Yy,
8% Z::Yk th . (2.36)

Given the thermodynamic definition of specific heat, the above equation is given by,

Oh =~ Y,
o, > Vi Pka th (2:37)
k=1
B dY;
— Cp 893] th o, (2.38)

This equation is rearranged,

or 1 Y,
5o = (ax] Z v ) (2.39)

k=1

and substituted into the energy diffusion flux vector to obtain,

K v, K
Commonly, the last two terms in the above equation can be canceled when a simple diffusion
model is assumed (see Section 2.2.4, Equation 2.46) in the limit where the ratio of thermal
and mass diffusion is equal (unity Lewis number, or equivalently speaking the Prandtl number
equals the Schmidt number, i.e.,

Sc

Leunity — _

(6%
- =1. 241
Pr D ( )
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For completeness, the thermal diffusivity, Prandtl and Schmidt number are defined by,

a= p%, (2.42)
p
C
Pr= %“ = p%. (2.43)
and
Sc = pg . (2.44)

2.2.4 Conservation of Species

The mass conservation equation for species k in a mixture of K gas phase species is

aka
ot

dV—i—/kaujnde: —/pﬁj,kYkndejL/wde, (2.45)

where wy, is the mass generation rate of species k per unit volume by homogeneous chemical
reactions. We allow several approximations for the diffusion velocity, 4;, derived in Ap-
pendix A. The simplest form is Fickian diffusion with the same value of mass diffusivity for

all species,
1 0Y}

Ui = —D— .

ok Yk 8.1'1
This form is used for the Reynolds-averaged form of the equations for turbulent flow. A more
accurate approximation uses a mixture-averaged diffusion coefficient, Dy, for each species

diffusion velocity,

(2.46)

_ 1 00Xk _ (1 aY, 1 8W> (2.47)
— Dy, . )

Ai — D, _ L L

2.2.5 Conservation of Momentum, Axisymmetric with Swirl

Axisymmetric flows, with or without swirl, are described by two-dimensional equations in
cylindrical coordinates. All azimuthal derivatives are zero (i.e., d/08 = 0). The axial
coordinate is x, the radial coordinate is r, and the azimuthal coordinate is . The radius is
retained in the equations and the purpose will become more clear in the discussion of the
discrete integral form. The axial velocity is u, the radial velocity is v, and the azimuthal
velocity is w.
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Axial-Momentum:

Opur 0 9 0 dp 0 0
T + e (pu r) + o (puvr) + ré?:v = (r7es) + o (r7er) + proe (2.48)
Radial-Momentum:
dpvr 0 0 9 Op o O 0
BT + Ey (puvr) + o (pv°r) + ro, TPV = oo (rTee) + o (rTer) — Tog + prgr  (2.49)
Azimuthal-Momentum:
Opwr 0 0 0 10 ,,
2 =z — -2 9.
5 + . (puwr) + B (pvwr) + pvw o (r7o2) + . (r*70,) (2.50)
The viscous stress terms for the cylindrical equations are
[ Ou 2 (Ou Ov w
[Ov  Ou
Tra = M e + 5} (2.52)
[ Ov 2 /0u Ov w
o= g5 (G ety 259
(v 2 /0u Ov w
Tog = W _2;—5 (%_I_E_{_;)} (2.54)
0 /w
T = arg- <?> (2.55)
ow
_ow 9.

The azimuthal equation can be simplified by relating the swirl velocity to the angular velocity,
w = rw. The momentum equation, written in terms of the angular velocity, is

opwr 0 0 0 Ow 0 Ow Ow
5 + B (puwr) + g (powr) + 2pvw = E (ru%) + I (T}LE) + QME. (2.57)

The production term that is used in the turbulence model is
ou\? ov\” v 2 ou  w\® 2 [(0u v v\’
PP T B T Y ) R
[(895) + <8r) + r * (8r+8x) 3 (8x+8r+r) (2:58)

2.2.6 Laminar Flow Boundary Conditions

The laminar flow math models require boundary conditions for velocity, pressure, tempera-
ture and enthalpy variables, and mixture composition.
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Inflow

There are three types of inflow boundary conditions. For velocity-specified inflow, Dirichlet
conditions are applied to velocities in the momentum equations, temperature in the energy
equation, and mass fractions in the species equations. The mass flow rate at the boundary is
specified for the continuity equation. The pressure floats to a consistent value. Alternatively,
a control volume balance is retained at the boundary nodes and the convection fluxes are
specified.

For pressure-specified inflow, the outflow boundary condition is applied with the added
condition that the flow must enter the domain normal to the mesh boundary. Transport
equations are solved for the momentum, energy and species equations.

Outflow

The pressure is specified at integration points on the outflow boundary. The specified pres-
sure is used in the surface integration procedure for approximation nodal gradients. The pres-
sure gradients are used to construct an interpolation for the mass flow rate at the boundary.
Transport equations are solved for the momentum, energy and species equations. Upwind
extrapolation is used for the scalars if the flow is leaving the domain. The boundary values
of velocity and specified far-field values of scalars are used if the flow is entering the domain.

Wall

It is assumed that there is no mass flow through the wall. The velocity is specified as a
Dirichlet boundary condition in the momentum equations. The temperature is specified as
a Dirichlet boundary condition in the energy if the wall is isothermal. We currently do
not support heterogeneous chemical reactions at a surface, so there should be no boundary
condition applied to the mass fractions.

Symmetry Plane

There is no mass flow rate through the symmetry plane and there is no transport of scalar
variables. The normal stress (pressure and viscous) at the symmetry plane is applied in the
momentum equations.
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2.2.7 Volume of Fluid

The volume-of-fluid equation (VOF) is a pure advection equation used for tracking phases
in multi-phase simulations. Its governing equation is

/g—?dv+/aujnjd5 = /SadV, (2.59)

where the source term, S, can contain contributions from compressibility and phase change.
Because this is a form of a continuity equation, care must be taken that it remains consistent
with the overall continuity equation. The overall continuity equation is applied without dis-
tinction between phases, while this equation provides continuity based on fluxes of individual
phases. Althought more than 2 phases is not currently supported in Fuego, if there were N
phases one would solve N — 1 VOF equations after solving the overall continuity equation.

2.3 Radiation Transport Equation

For applications involving PMR, both the radiative heat flux and the divergence of the
radiative heat flux are needed. The radiative heat flux vector provides the radiative flux
to the boundary of the heat conduction region. The flux divergence provides one of the
principal volumetric heat sources in the turbulent combustion region for fire applications.

2.3.1 Boltzmann Transport Equation

The spatial variation of the radiative intensity corresponding to a given direction and at
a given wavelength within a radiatively participating material, I(s), is governed by the
Boltzmann transport equation. In general, the Boltzmann equation represents a balance
between absorption, emission, out-scattering, and in-scattering of radiation at a point. For
combustion applications, however, the steady form of the Boltzmann equation is appropriate
since the transient term only becomes important on nanosecond time scales which is orders
of magnitude shorter than the fastest chemical reaction [8].

Experimental data shows that the radiative properties for heavily sooting, fuel-rich hy-
drocarbon diffusion flames (107*% to 1075% soot by volume) are dominated by the soot
phase and to a lesser extent by the gas phase (Modest [9], pg. 425). Since soot emits
and absorbs radiation in a relatively constant spectrum, it is common to ignore wavelength
effects when modeling radiative transport in these environments. Additionally, scattering
from soot particles commonly generated by hydrocarbon flames is several orders of magni-
tude smaller that the absorption effect and may be neglected [8]. With these assumptions
in mind, the appropriate form of the Boltzmann radiative transport equation for heavily
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sooting hydrocarbon diffusion flames is

0 paoT?
P J(s) = , 2.60
sl (3) + ol (5) = 22 (2.60)
where 1, is the absorption coefficient, I(s) is the intensity along the direction s;, and T is
the temperature.

The flux divergence (the last term on the right hand side of Equation 2.33) may be written
as a difference between the radiative emission and mean incident radiation at a point,
dq;
3xi
where G is the scalar flux. The quantity, G /4w, is often referred to as the mean incident
intensity [10].

= o [40T* = G] (2.61)

The scalar flux and radiative flux vector represent angular moments of the directional
radiative intensity at a point [9],

2T T
G = / / I (s)sind,,db,,do,., (2.62)
o Jo

2 s
¢ = / / I (s) s;sin 0.,,db.,db,., (2.63)
0 0

where 0., and 6,, are the zenith and azimuthal angles respectively as shown in Figure 2.2.

0 . s=sino,sin0,, i+coso, j+sino,cos0,, k
2

Figure 2.2. Ordinate Direction Definition,
s =sinf,, sinf,,i + cosd,,j + sin 6., cos 0.k

2.3.2 Radiation Intensity Boundary Condition

The radiation intensity must be defined at all portions of the boundary along which s;n; < 0,
where n; is the outward directed unit normal vector at the surface. The intensity is applied
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as a Dirichlet condition which must be determined from the surface properties and temper-
ature. The diffuse surface assumption provides reasonable accuracy for many engineering
combustion applications. The intensity leaving a diffuse surface in all directions is given by

1 .
I(s)==[roTy +eoTy+ (1 —e—1)q;"ny], (2.64)

T J

where € is the total normal emissivity of the surface, 7 is the transmissivity of the surface,
T, is the temperature of the boundary, T, is the environmental temperature and ¢;" is
the incident radiation, or irradiation for direction j. Recall that the relationship given by

Kirchhoft’s Law that relates emissivity, transmissivity and reflectivity, p, is
p+17+e=1 (2.65)

where it is implied that o = e.

2.4 Turbulence Modeling Overview

Turbulent reacting flows involve a very large range of length and time scales, requiring mas-
sive computational resources to directly resolve all of the physical processes for even the most
simple problem. To be able to solve complex problems of interest in a reasonable amount
of time, modeling approximations must be made. A filtered form of the time-dependent
Navier-Stokes, energy, and species mass conservation equations presented in Section 2.2 are
used, and closure models are applied to the new terms that arise due to the filtering oper-
ation. Temporal filtering is used in the Reynolds-Averaged Navier-Stokes (RANS) method,
and spatial filtering is used in the Large Eddy Simulation (LES) method. The form of the
models are dependent on the type of filtering performed, and will be discussed for both the
RANS and LES approaches in the following sections.

Figure 2.1 schematically illustrates the interaction between all of the transport equations
across the full range of length scales. The transport equations are shown in shorthand with
the notation T, RA, UA, D, S being the transient term, the resolved advection term, the
unresolved advection (Reynolds stresses) term, diffusion term and source term, respectively.
Only one transport equation is shown for each conservation principle, but it is understood
that three equations exist for momentum (u,v,w), and an equation exists for each species
being transported (seven in the present model plus two for soot). The momentum trans-
port equations are strongly interconnected while the species equations are coupled implicitly
through their source terms, thermophysical properties, and conservation of mass of the mix-
ture.

The length scales in Figure 2.1 between the smallest control volume dimension and the
largest mesh dimension are defined as being "resolved", and the transport equations are
used to solve the physics in this range. The effects of the resolved turbulent scales may be
modeled for RANS closures or they may be directly solved for LES closures. Turbulence
length scales can extend down many orders of magnitude beyond the smallest finite volume
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dimension to the Kolmogorov scales, and these subgrid scales must be modeled in either
closure approach.

The output of the closure models is expressed as a source term in the conservation
equations for the mean flow and as effective properties in the radiative transport equation.
Hence, the output of the closure models can be interpreted as being cell-averaged values for
the control volume for the appropriate time scale. For the RANS formulation used here, the
time scale is long relative to the turbulence time scales (i.e., long time average). For LES,
the time scale is the local advection time. For the current suite of models, the momentum
closure model is of the lumped-parameter type; that is, it assumes homogeneity of the subgrid
turbulence. The remaining closures, species and energy, are of the zone-model type; that is,
they assume heterogeneity of the species and energy subgrid. Two zones (one combusting,
one not) are used in the current zone models.

For length scales above the length scale of the mesh, the physics is modified via bound-
ary and initial conditions. Momentum boundary conditions include specified velocity (wind,
and mass sources), or constant pressure (inflow/outflow). Species boundary conditions in-
clude a mass source for the fuel (pool model). Thermal boundary conditions include flux
and temperature conditions. The following sections provide details of the math models for
conservation laws and fire physics models used in SIERRA /Fuego.

2.4.1 RANS Temporal Filtering

In many typical engineering applications, only time averages of physical quantities are of
interest. Often, details of the turbulent fluctuations are of little concern. RANS formulations
address this need by solving a temporally-filtered form of the transport equations, directly
yielding the time-averaged variables of interest. For this reason, RANS approaches represent
a relatively low-cost solution method at the expense of additional modeling complexity.

An independent variable ¢ can be temporally filtered to obtain its mean ¢ with the
mathematical form (Tennekes and Lumley [11])

d@ = tim - [ e e (2.66)

T—00 T t
)

The original variable can be represented as the sum of its mean and fluctuating component,
¢ = ¢ + ¢, with the properties that ¢ = ¢ and ¢ = 0. This is called the Reynolds
decomposition of a variable.

In combustion problems, the overall exothermic process can result in large localized
temperature increases and a correspondingly large density decrease in open systems where
the molecular weight change from reactants to products is small. Allowing for turbulent
fluctuations of density, the above temporal averaging procedure gives rise to additional terms
involving time averages of products of density and other variable (e.g., velocity) fluctuations.
An alternative approach to applying the Reynolds decomposition strictly to all independent
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variables is to consider a mass-weighted decomposition known as Favre averaging (Libby and
Williams [12], p. 15; Kuo [13], p. 419). This simplifies all of the transport equations and
eases modeling. A Favre-averaged variable ¢ is defined in terms of Reynolds averages as

¢

>R

. (2.67)

A variable can then be decomposed into its Favre-mean and fluctuating component as

6=06+9¢" (2.68)
where p¢” = 0. Note that ¢” # 0. The relation between time averaged and Favre-averaged
quantities is L

_ B Py
¢=¢(1+p?>. (2.69)
po

Favre averaging is used for all turbulent transport equations solved in SIERRA /Fuego.

For the RANS formulation used here, the laminar conservation equations of Section 2.2
are first temporally filtered, revealing additional terms that can be simplified by substituting
the Favre decomposition, resulting in the Favre-filtered equations that will be presented in
Section 2.5. This procedure results in new terms in the equations that consist of time
averages of products of fluctuating quantities, called Reynolds stresses. These moments
must be modeled to close the system of equations.

The length of the time filter is typically much larger than the time scales of a turbulent
flow, meaning that all time scales from the largest turbulence scale down to the minimum
Kolmogorov scale are represented by these Reynolds stresses. In a strict sense, there can be
no time dependence of a mean (time-averaged) quantity. However, if there are variations in
mean quantities that occur on time intervals long compared to the averaging interval, then
the transient terms for the mean quantities may be justified and required. For this reason,
unsteady RANS simulations are possible with the present formulation. The available RANS
turbulence closure models are discussed in Section 2.6.

2.4.2 LES Spatial Filtering

Unlike the RANS approach which models most or all of the turbulent fluctuations, LES
directly solves for all resolved turbulent length scales and only models the smallest scales
below the grid size. In this way, a majority of the problem-dependent, energy-containing
turbulent structure is directly solved in a model-free fashion. The subgrid scales are closer
to being isotropic than the resolved scales, and they generally act to dissipate turbulent
kinetic energy cascaded down from the larger scales in momentum-driven turbulent flows.
Modeling of these small scales is generally more straightforward than RANS approaches, and
overall solutions are usually more tolerant to LES modeling errors because the subgrid scales
comprise such a small portion of the overall turbulent structure. While LES is generally
accepted to be much more accurate than RANS approaches for complex turbulent flows,
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it is also significantly more expensive than equivalent RANS simulations due to the finer
grid resolution required. Additionally, since LES results in a full unsteady solution, the
simulation must be run for a long time to gather any desired time-averaged statistics. The
trade-off between accuracy and cost must be weighed before choosing one method over the
other.

The separation of turbulent length scales required for LES is obtained by using a spatial
filter rather than the RANS temporal filter. This filter has the mathematical form

o(x,t) = " o(x' t)G(x' — x) da’, (2.70)

— 00

which is a convolution integral over physical space & with the spatially-varying filter function
G. The filter function has the normalization property fj;o G(x)dx = 1, and it has a
characteristic length scale A so that it filters out turbulent length scales smaller than this
size. In the present formulation, a simple “box filter” is used for the filter function,

G<w,_m):{ 1V & (@ —z) eV (271)

0 :  otherwise ’

where V' is the volume of control volume V whose central node is located at a. This is
essentially an unweighted average over the control volume. The length scale of this filter
is approximated by A = V3. This is typically called the grid filter, as it filters out scales
smaller than the computational grid size.

Similar to the RANS temporal filter, a variable can be represented in terms of its filtered
and subgrid fluctuating components as

p=0+¢. (2.72)

For most forms of the filter function G(x), repeated applications of the grid filter to a variable

do not yield the same result. In other words, ¢ # ¢ and therefore ¢ # 0, unlike with the
RANS temporal averages.

As with the RANS formulation, modeling is much simplified in the presence of large
density variations if a Favre-filtered approach is used. A Favre-filtered variable ¢ is defined
as

K

j="F 9273
¢ > (2.73)

and a variable can be decomposed in terms of its Favre-filtered and subgrid fluctuating
component as

p=0¢+¢" (2.74)

Again, note that the useful identities for the Favre-filtered RANS variables do not apply,

so that ¢ # ¢ and ¢" # 0. The Favre-filtered approach is used for all LES models in
SIERRA /Fuego.

43



2.5 Turbulent Flow Equations, Favre-Averaged

The Favre-averaged turbulent transport equations are derived from the laminar equations
of Section 2.2 by passing the equations through either the RANS temporal filter of Equa-
tion 2.66 or the LES spatial filter of Equation 2.70. The mathematical form of the equations
are essentially identical between the two filtering methods, so only a single set of equations
will be presented. Care should be taken to interpret the filters as either temporal or spatial,
depending on the closure models selected. While it is the Favre-averaged form of the equa-
tions that are solved, a comparison of the simple Reynolds-averaged and the Favre-averaged
form is given in Appendix A.2 for reference.

The approach most commonly used in turbulence modeling is called the Boussinesq eddy
viscosity approximation, which relates the turbulent stress tensor to the filtered strain rate
tensor through a modeled turbulent eddy viscosity. This general modeling approach has
shown remarkable success for a broad range of problems (Wilcox [14]), and is the approach
used in STERRA /Fuego. A similar approach is used for scalar transport, where the scalar
flux vector is related to scalar gradients through a modeled diffusion coefficient.

The following subsections describe the turbulent transport equations expressed in terms
of a turbulent eddy viscosity or turbulent diffusion coefficient through the Boussinesq approx-
imation. The treatment of these coefficients is dependent upon which of the many closure
models are selected, and will be described in Section 2.6.

2.5.1 Conservation of Mass
The integral form of the Favre-filtered continuity equation used for turbulent transport is
ap _.

This equation is in closed form, and no additional modeling is required.

2.5.2 Comnservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport
are

Op; o
g: dv+ / pilgiin;dS + / pridS = / 7m;dS+ / Turu, ;A5 + / (5 — po) g:dV, (2.76)

where the turbulent stress 7., is defined as
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RANS Modeling

For RANS simulations, 7,,,, represents the Reynolds stress tensor and can be reduced to

the form 7,,.,, = —pujuj by substitution of the Favre decomposition u; = ; + u; of each

variable and simplifying. The deviatoric (trace-free) part of the stress tensor is defined as

1
£u]~ = Tuu; — gTuk“kézj
2 -

where the turbulent kinetic energy is defined as k = tujuy. The deviatoric part of the

Reynolds stress tensor is modeled by the Boussinesq approximation which relates the Reynolds
stresses to the filtered strain rate tensor through a modeled turbulent viscosity p;, resulting
in

ou;  0u, 2 Ouy
D i j
= + - dij
Tuiu e (8xj 8951') 3Mt8xk !

~ 1 -~
where the filtered strain rate tensor is defined by

_ 1 / Oii. 7’
S, = (aul + auﬂ) . (2.80)

¥ = 5 8$J~ (9332

Substituting this into Equation 2.78 yields the modeled form of the full Reynolds stress
tensor (Kuo [13], p. 445)

~ 1~ 2 -
Tugu; = 2t (Sij - gskk(sij) - gﬁk%- (2.81)

The Favre-filtered momentum equations then become

5 . 2 -
g; dv + / pilsiin;dS + / (p + gpk) n,dS =

.
[ 2040 (85 g8uds ) s + [ - o) g 282)

where RANS closure models for the turbulent viscosity pu; are presented in Section 2.6.
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LES Modeling

For LES, 7,,,, in Equation 2.76 represents the subgrid stress tensor. The deviatoric part of
the subgrid stress tensor is defined as

1
Tiuj = Tuiuj — gTukuk(SU
2_,
Tuju; T 3P ij, (2.83)

where the subgrid turbulent kinetic energy is defined as ¢* = %(ukuk —Uiuy). The deviatoric
part of the subgrid stress tensor is then modeled similar to RANS closures as (Moin, et
al. [15])

_ 1 -~
Substituting this into Equation 2.83 yields the modeled form of the full subgrid stress tensor
~ 1~ 2,

For low Mach-number flows, a vast majority of the turbulent kinetic energy is contained
at resolved scales (Erlebacher, et al. [16]). For this reason, the subgrid turbulent kinetic
energy ¢° will not be directly treated and will instead be included in the pressure as an
additional normal stress. The Favre-filtered momentum equations then become

opii; . 2

ot

~ 1~
[ 20+ (85 g8uds ) nas + [ - o) g (2.56)

where LES closure models for the subgrid turbulent eddy viscosity u; are presented in Sec-
tion 2.6.

2.5.3 Conservation of Energy

The integral form of the Favre-filtered energy equation used for turbulent transport is

dph e 7 0%
SV + / phitnids = — / 443 _/ T’“‘f”jds_/ or, "
oP 0P Ou;
oP _ oP OUi s 2.
+/(8t +“J@xj)dv+/maxjdv (2.87)
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The simple Fickian diffusion velocity approximation, Equation 2.46, is assumed, so that the
mean diffusive heat flux vector g; is

K
Y,
- %th—"f (2.88)

If Sc = Pr, i.e., unity Lewis number (Le = 1), then the diffusive heat flux vector simplifies

to q; = lﬁ‘r or . The viscous dissipation term is closed by

Tija_xj = <(M+Mt) (8xj + 8xi> 3 (Pk‘i‘/ita > 5”) oz,

- - 1~ 8u2
The turbulent diffusive flux vector 7,, in Equation 2.87 is defined as
Thu, = D (?ﬁ; - Baj) . (2.90)

For RANS simulations, 74,, represents the turbulent energy diffusive flux vector and is
simplified to the form 7,, = ph”u by substitution of the Favre decomposition of each
variable. It is then modeled by

Mt oh

Thay = ph"ul] = “Pr, 0z, (2.91)
J

where Pr; is the turbulent Prandtl number and p; is the modeled turbulent eddy viscosity
from momentum closure. For LES, 73, represents the subgrid turbulent energy diffusive
flux vector, and is modeled in the same way as

Mt oh

Thu; = 57

2.92
Prt al'j ’ ( )

where Pr; is the subgrid turbulent Prandtl number and j; is the modeled subgrid turbulent
eddy viscosity from momentum closure.

The resulting filtered and modeled turbulent energy equation for both RANS and LES
is given in Libby and Williams [12], p. 25, as

dph e B 1 oh aq;
/ dV—i—/phu]nde = /(Pr + Prt> &Uj n;dS — /awde (2.93)
oP 9P du,
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This equation is also given in Gran et al. [17] (without the transient and radiation source
terms and the additional term for laminar transport). The turbulent Prandtl number must
have the same value as the turbulent Schmidt number for species transport to maintain unity
Lewis number.

2.5.4 Conservation of Species

The integral form of the Favre-filtered species equation used for turbulent transport is

opY; . - _
/ gtde—i—/ﬁYkﬂ]anS: —/Tykujnde—/kaaj,knde—l—/wde, (294)

where the form of diffusion velocities (see Equation 2.46) assumes the Fickian approximation
with a constant value of diffusion velocity for consistency with the turbulent form of the
energy equation, Equation 2.87.

The turbulent diffusive flux vector 7y, ,; is defined as

Ty, = P (17,5] - Ykaj> . (2.95)

For RANS simulations, 7y, represents the turbulent species diffusive flux vector and is
simplified to the form 7y,,;, = pY;'u} by substitution of the Favre decomposition of each

variable. It is then modeled as

_ e OV
Sc; Ox;

Ty = PV = (2.96)
where Sc; is the turbulent Schmidt number for all species and p; is the modeled turbulent
eddy viscosity from momentum closure. For LES, 7y,,, represents the subgrid turbulent
species diffusive flux vector, and is modeled identically as

ot affk
= 2.
TYk’LLJ SCt axl ) ( 97)

where Sc; is the subgrid turbulent Schmidt number for all species and p; is the subgrid
modeled turbulent eddy viscosity from momentum closure.

The Favre-filtered and modeled turbulent species transport equation for both RANS and
LES then becomes (Gran et al. [17])

OpYy o - (o OV /T
5 dV+/kaujnde—/<SC + Ser 8xjn]d5+ widV. (2.98)

If transporting both energy and species equations, the laminar Prandtl number must be
equal to the laminar Schmidt number and the turbulent Prandtl number must be equal to
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the turbulent Schmidt number to maintain unity Lewis number. Although there is a species
conservation equation for each species in a mixture of K species, only K —1 species equations
need to be solved since the mass fractions sum to unity and

Yi=1->Y; (2.99)

2.5.5 Radiation Transport

The Favre-averaged energy equation, Equation 2.94, requires the time-averaged radiative
flux divergence. From Equation 2.61, the time-averaged radiative flux divergence is given by

Jq;.

i

= dop,T* — 1,G. (2.100)

For optically thin turbulent eddies, which is the case for many combustion applications,
fluctuations in the absorption coefficient and the scalar flux are weakly correlated [8] so
Equation 2.100 may be simplified to

a7
afli'i

= dop, T — [i,G. (2.101)

The time averaged scalar flux is obtained from the time averaged Boltzmann radiative trans-
port equation

0 fagoT?
1 T = 2.102
T + T () = 27 (2.102)

S
where the correlation between the turbulent fluctuations in the absorption coefficient and
the intensity is assumed small to simplify the absorption term.

Both Equation 2.101 and Equation 2.102 include the time averaged emission term, aT%,
which may significantly increase the radiative emission from a turbulent flame above what
would be estimated from the mean temperature and absorption coefficient values. The details
of the closure used for this term are discussed in the turbulent combustion model section.

2.6 Turbulence Closure Models

The Favre-filtered turbulent flow equations of the previous section have been modeled in
terms of pu,, the turbulent eddy viscosity for RANS simulations and the subgrid turbulent
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eddy viscosity for LES. Evaluation of this eddy viscosity is dependent upon the closure model
selected. All models supported by SIERRA /Fuego are described below.

2.6.1 Standard k-¢ RANS Model

The standard k-e closure model is a two-equation type of model, where transport equations
for the turbulent kinetic energy and the turbulent dissipation rate are solved to obtain
length-scale and time-scale estimates for the local turbulence field, to be used for modeling
the turbulent eddy viscosity ;. The turbulent kinetic energy, k, and the dissipation rate of
turbulent kinetic energy, €, are given by (Gran et al. [17])

Opk _

By —dV + /,okujnde /Uk 8% n;dS + / (P, — pe)dV (2.103)
Ope s I Oe
EdV + pGande = o 8% anS Cdpk CCQPE) dV (2104)

respectively, where the turbulence production rate, Py, is defined as

—— 01
Py = —pulid] az (2.105)
J

and is modeled using the same Boussinesq approximation as in Equation 2.81,

ou ou; \ ou; 2 oty \ O0u
P, = i j i 2 ok m
, (830] * Ox Z> or; 3 (p +m8xk) 0z,
1 2 - 70w
= [2/%5 (Sij - gskkfsij) - gpk‘@j] EEo (2.106)
J

The turbulent eddy viscosity is then given by the Prandtl-Kolmogorov relationship,
py = CpkT. (2.107)

where 7 = mm( ,dty). The filter time, dt; is provided by the temporally filtered Navier
Stokes model (Tleszen et al. [18]). The parameters C.y, Ce, 0%, and o, are adjustable
constants.

Frequently, although not formally justified in high Reynolds flows, the diffusion coefficient
for the turbulent kinetic energy and turbulence dissipation, Equations 2.103 and 2.104,
may include the molecular viscosity. This option is supported within Fuego by entering the
following command line in the Fuego region block, include molecular viscosity in k-e
diffusion term.
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2.6.2 Low Reynolds Number k-¢ RANS Model

In the case of the low Reynolds number turbulent flows, the standard k-e transport equations
can be modified to contain additional damping functions to improve their accuracy. The
low Reynolds number model of Launder and Sharma [19] are used here, which modify the
turbulent kinetic energy equation, Equation 2.103, to includes an additional right-hand-side
source term

ok \*
Sy=—2p|=— 2.108
et (2.108)
and the dissipation rate equation to include the non-isotropic dissipation source term
i, \?
Sir = —2u)” — ] . 2.109
¢ v (8xk83:j) ( )

The constants in the dissipation rate equation are modified by damping coefficients, C,, =
fiCe, and C,, = C, fo, where f} is unity and f, =1 — 0.3¢ Bt

The eddy viscosity is then given by
pe = Cupfukr. (2.110)

Wall functions for momentum and turbulence quantities are not used with this model.

2.6.3 RNG k-¢ RANS Model

The RNG k-e model was derived using a rigorous statistical decomposition of the velocity
field called renormalization group (RNG) theory. This model has several significant benefits
over the standard k-¢ model, including improved accuracy for rapidly strained flows, swirling
flows, and low Reynolds number flows, without additional modifications. Additionally, values
for the model constants are derived analytically rather than being evaluated empirically.
Papageorgakis and Assanis [20] describe the version of the RNG k-¢ model as implemented
here.

The same turbulent kinetic energy equation as in the standard k-e model, Equation 2.103,
is used for the RNG k-¢ equation. The turbulent kinetic energy dissipation rate equation is
the same as Equation 2.104, with the addition of a single source term on the right-hand-side
of the equation,

Cu’ (L =n/no) €
SRNG = 1 > — 2.111
€ 1+6n3 k’ ( )
where C),, 3, and 7, are model constants, and
~ ~ 1k
n = (25;5i;)2 (2.112)
€

As with the standard k-e model, the turbulent eddy viscosity is then given by the Prandtl-
Kolmogorov relationship,
pe = CypkT. (2.113)
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2.6.4 v2-f RANS Model

Durbin [21] introduced a method for handling the wall region without using either wall
functions or damping functions. In his method a fine grid is required near the wall (e.g., the
first grid point is typically within one dimensionless unit of distance from the wall where
the coordinate normal to the wall is nondimensionalized with the inner scale for a turbulent
boundary layer, y* = yu,/v < 1 at the first grid point, where wu, is the friction velocity,

Tw/p). The model employs two transport equations in addition to slightly modified k& and
€ equations to account for the nonhomogeneous region near the wall. The eddy viscosity is
formulated using the component of turbulent kinetic energy normal to the wall for velocity
scaling (instead of using v/k as in the standard k-e model).

The turbulent kinetic energy, k, is given by Equation 2.103 while the dissipation rate of
turbulent kinetic energy, €, is given by

s pe Oe 1, ., _

The time scale, T, is the usual time scale k/e, away from the wall region; however, near the
wall, if k/e becomes smaller than the Kolmogorov time scale \/v/e, then the latter is used
for T'. This is formally stated by

o) k
T = min | T}, — = ] (2.115)
2\/§020u\/ S?
T) = max F,ﬁ 31 , (2.116)
€ €
where 1 (05, 0n;\ (0w O
59 = U; Uy U; Uj
- G.9.. — 2.11
S S”SZ] 4 (ai[)j + 83@) (830] + (9961) ( 7)

and the modified constant, C{ , is given by

Cl =C, (1 +0.045 k;/ﬁ) : (2.118)

The model includes a transport equation for v2,

(_|_ )8_F
K Mt@xj

opv?  Opu® 0

pNv?
8t 6xj N 8xj '

T

+ pkf — (2.119)

An elliptic relaxation model equation is formulated to solve for the variable f in the above
equation. The purpose of the elliptic relaxation model is to account for nonlocal effects such
as wall blocking; the equation is given by

2L )\=c,—— 7 2 — N -1 ) 2.12
f oz, (3xj) Ch T + Co2v, 3 + ( ) T (2.120)
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Finally, the turbulent eddy viscosity is given by

py = CLpvT. (2.121)

2.6.5 k —w RANS Model

The k — w turbulence model and its variants are similar in structure to the £ — € models.
However, instead of computing the turbulent dissipation rate directly, the £ —w model models
the transport the reciprocal of a turbulent timescale referred to as the turbulent frequency.
This quantity, w, can be related to the turbulent dissipation by

€ = B*kw. (2.122)

The the transport equations are given by the 2006 model, (Wilcox [22]),

%dv—l-/pkﬂjnjdsz /(u+akp—k)%njdv+/(ﬂf ~ B k) dV,  (2.123)

ot w0z,

Opw o B pk . Ow W 5 pog Ok Ow

Wd‘ﬂ—/ pwin;dS = /(u—i—aw > )axjn]dv—l—/ (kak Bpw” + o Ox, 01, dv.
(2.124)

The user is to note the above standard for writing the effective diffusive flux coefficient. The
model also has a number of adjustable parameters: Sy = 0.0708, 5* = 0.09, v = é—g, Clim = g,
or = 0.6, and o, = 0.5. The constant 3 is given by,

B=Dbofs (2.125)
where L85
+ S9Xw
= 4% 2.126
Jo=17 100 . (2.126)
The value of x, is as follows:
;5821 Ski
X = |W‘ (2.127)

The production term is the same as in k — e. Typically limiters are used to prevent it
from exceeding the dissipation rate by too large an amount. Although the 2006 description
does not speak of production limiters, other sources that use the 2006 model do, i.e.

Py = max (P, 10pkw) . (2.128)

The value of 10 is expected to be a user specified quantity (see input file manual for more
details). In general, this term is defaulted to a very high number.
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The eddy viscosity is

k
pUr = p— (2.129)
w
where @ is,
285;:5;;
w = max(w, Ciim I, (2.130)

2.6.6 Shear Stress Transport (SST)

It has been observed that standard 1998 k —w models display a strong sensitivity to the free
stream value of w. To remedy, this, an alternative set of transport equations have been used
that are based on smoothly blending the k — w model near a wall with k — ¢ away from the
wall (see Mentor [23]). Because of the relationship between w and €, the transport equations
for turbulent kinetic energy and dissipation can be transformed into equations involving
k and w. Aside from constants, the transport equation for k is unchanged. However, an
additional cross-diffusion term is present in the w equation. Blending is introduced by using
smoothing which is a function of the distance from the wall, F'(y). The transport equations
for the Mentor 2003 model ( [23]) are provided by the following:

dOpk ok
%dv+/pkajnjd5:/(M+&kut)%nj+/(zﬂg — B pkw) dV, (2.131)
J
opw . . Ow poe Ok Ow / 0 s g
ore n,;dS = R i [ 21 — p)Ple2 9F 9 Tpe .
5 dV+/pwujn]dS /(u#—awut)axjnj—l—/ ( ) O, 8xjdv+ (Vt Y — Bpw® | dV.
(2.132)

The model coefficients, 6, 6, 4 and B must also be blended, which is represented by
¢ =Fo1 + (1 - F)y. (2.133)

where o1 = 0.85, 0k = 1.0, 0,1 = 0.5, 0,0 = 0.856, 71 = g, Yo = 0.44, 5, = 0.075 and
[o = 0.0828.

The blending function is given by

F = tanh(arg;), (2.134)
where
: VE 500p\  4po.qk

arg; = min (maX (ﬁ*wy’ 57w ) D | (2.135)

The final parameter is

1 0k ow

CDy, = 250y ———, 10719 ) . 2.136
koo = THAE ( powe Oz Ox;’ ) ( )
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In the 2003 SST model description, the production term is expected to be limited:
Py = max (P, 10pkw) . (2.137)

The value of 10 is expected to be a user specified quantity (see input file manual for more
details). In general, this term is defaulted to a very high number.

An important component of the SST model is the different expression used for the eddy
viscosity,

(llﬁk
_ 2.138
Bt = nax (a1w, SFy)’ ( )
where F5 is another blending function given by
F, = tanh(arg3). (2.139)
The final parameter is
2v'k 500
args = max *i, — 'I; : (2.140)
Brwy” pwy

2.6.7 Subgrid-Scale Kinetic Energy One-Equation LES Model

The subgrid scale kinetic energy one-equation turbulence model, or Ksgs model, represents
a simple LES closure model. The transport equation for subgrid turbulent kinetic energy is
given by

6ﬁksgs —17.5€8 ~ 1% aksgs sgs sgs

The production of subgrid turbulent kinetic energy, P;*°, is modeled by Equation 2.106 while
the dissipation of turbulent kinetic energy, D;¥°, is given by

D o C kSgS%
5 =C. 2.142
k A ) ( )
where the grid filter length, A, is given in terms of the grid cell volume by
A=V3. (2.143)
The subgrid turbulent eddy viscosity is then provided by
py = Cp AR (2.144)

where the values of C. and C),, are 0.845 and 0.0856, respectively.
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2.6.8 Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid turbulent eddy
viscosity using a mixing length-type model, where the LES grid filter size A provides a
natural length scale. The subgrid eddy viscosity is modeled simply as (Smagorinsky [24])

e = p (CSA)2 ‘g‘a (2'145)

where the strain rate tensor magnitude is defined as |S| = (25;;S;;) 2. The constant coefficient
C; typically varies between 0.1 and 0.24 and should be carefully tuned to match the problem
being solved (Rogallo and Moin [25]). It is assigned a value of 0.17 here.

Although this model is desirable due to its simplicity and efficiency, care should be taken
in its application. It is known to predict subgrid turbulent eddy viscosity proportional to
the shear rate in the flow, independent of the local turbulence intensity. Non-zero subgrid
turbulent eddy viscosity is even predicted in completely laminar regions of the flow, some-
times even preventing a natural transition to turbulence. Therefore, this model should only
be used when this behavior will not adversely affect results.

2.6.9 Dynamic Smagorinsky LES Model

As mentioned in the previous section, the standard Smagorinsky model requires careful tun-
ing of the constant model coefficient for the particular problem being simulated, and it is
often overly-dissipative due to its inability to adapt to the local turbulent environment. Ger-
mano et al. [26] developed an improvement over the standard Smagorinsky model, where the
coefficient C is dynamically calculated based on the local turbulence field. A generalization
of this method for variable-density flow is used here (Moin et al. [15]).

Similar to the standard Smagorinsky LES closure model, the subgrid eddy viscosity is
modeled by the mixing length approximation

pu = CrpA?[S), (2.146)

where the strain rate tensor magnitude is defined as |S| = (2§ij5’ij)%. The coefficient Cg
is dynamically evaluated by taking advantage of scale similarity in the inertial range of the
turbulence spectrum, near the minimum resolved scales. This is done by introducing a “test
filter” which is identical to the grid filter defined in Equation 2.70 except for having a larger
filter size denoted by A. The test filter of variable ¢ is denoted by ¢.

The previously-defined subgrid stress tensor can be rewritten as

—_—

—(puiu; — pu;;)

= — (puiuj - %) (2.147)
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and an analogous larger-scale “subtest” stress T.,,,, can be analogously defined as

where the () notation denotes resolved quantities that have been passed through the test
filter. These two stresses can be related to each other through the algebraic identity of
Germano [27],

Ly, = Tuvuy — Tom, (2.149)
- _ (@ _ p“l’f“ﬂ') . (2.150)
0

Note that the right-hand side of Equation 2.150 is completely computable in terms of resolved
quantities.

By modeling the two stresses in Equation 2.149 and equating them to Equation 2.150,
the model coefficient C'r can be dynamically evaluated. The subtest stress is modeled anal-
ogously to the subgrid stress, as

e 1.
oo (58 155
Tyu; = 2CRpA* |S] P L — —2kk akk dij |, (2.152)
p 3 p

where Cp is assumgd to be the same at both scales. The test-filtered strain rate tensor is
defined similar to |S| as

D=

5] = <2p5:“ @> . (2.153)
p P
Notice that when the modeled forms of 7,,,,; and T, are substituted into Equation 2.149,
Cr appears inside a test filtering operation. Formally solving this system of equations for Cr
requires the expensive proposition of solving an additional set of coupled integro-differential
equations (Ghosal et al. [28]). Alternatively, it is common practice to remove Cg from the
test filter with the assumption that it is varying slowly over distances on the order of the test
filter size. This greatly simplifies calculations, although it yields a system of overdetermined
equations for this single constant. The square of the error involved in this approximation is
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Q = (LZ] — CRMZ‘]')Q, Where

p
— — —_— T
AR A 7Si' 1pS = = 15
My, = 2pA%S) (pg — gp_j’faij> — 2pA? S| (S,j — gskkaij) (2.155)
p

Minimizing this error in a least-squares fashion yields an expression for the modeled Smagorin-
sky coefficient (Lilly [29]),
Luiuj- Muiu]'

Cp = 2.156
B My, My, (2156)

that can be used directly in Equation 2.146 for the subgrid turbulent eddy viscosity.

Due to the above simplifications, the model constant C'r can sometimes fluctuate wildly
to both large positive and negative values. These fluctuations can possibly lead to numerical
instability, so they must be controlled. A common solution, and one that is taken here, is to
pass the numerator and denominator of Equation 2.156 through the test filter, yielding

Muiuj Muiuj

This can be crudely justified by recognizing that C'r was already assumed to vary slowly
over distances equal to the test filter size, so that this filtering operation is simply enforcing
that assumption.

This form of the dynamic Smagorinsky closure model allows energy backscatter, which is
an intermittent transfer of turbulent kinetic energy from small scales to larger scales rather
than the typical cascade from large to small scales. While backscatter can occur in real
turbulent flows, the predicted negative eddy viscosities of the dynamic Smagorinsky model
are more often attributable to model errors than to a real physical backscatter process. This
can easily destabilize a simulation, so negative eddy viscosity is disallowed in the present
formulation.

The only free parameter in the dynamic Smagorinsky closure model is the ratio between
the test and grid filter sizes, a = A/ A. Solutions are fairly insensitive to the choice of
«a, although values of around o = 2 are usually considered optimal (Germano et al. [26]).
This ratio is dictated by the box filter formulation used in Fuego and the mesh topology
selected by the user. The test filter volume for a particular CVFEM node is defined as
the volume of all surrounding finite elements that contain that node. (See Chapter 3 for
more information about the CVFEM formulation.) On uniform hexahedral and uniform
quadrilateral meshes, the test filter ratio will have a value of 2.0. The ratio will be around
1.59 for uniform tetrahedral meshes and around 1.73 for uniform triangular meshes, which
are still reasonable values.
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2.6.10 Buoyancy Models for the Production Rate

There are two supported models that augment the production of turbulent kinetic energy via
buoyancy contributions, buoyant vorticity generation [30] and Rodi’s [31| buoyancy term.

The buoyant vorticity generation model has been developed and validated by Sandia
National Laboratories group 9132 for use in large scale buoyant plumes. The model attempts
to augment the production of turbulent kinetic energy by adding a source term, Gz to both
the turbulent kinetic energy and dissipation rate equation that is related to the baroclinic
torque,

 Couglp+ )| 22X 22|

5= . (2.158)
2
Please refer to Appendix D for a more detailed derivation of the model.
The buoyancy model of Rodi is given by
pe OT
Gp=p——=—g;. 2.159
B ﬁPrt Oz, 9 ( )

In each model, derivatives are evaluated at the subcontrol volume center while the prop-
erty values are lumped.

The right hand side of the turbulent kinetic energy equation for all model is rhs+ =
J GpdV. For the dissipation rate equation, the source term is rhs+ = [ Ceg%Gde for the
buoyant vorticity generation model while it is rhs+ = [ C’élC64%G pdV otherwise. Recall
that the inverse time scale is determined by the turbulence model of choice, i.e., ¢ for the
standard k — € model and provided in Equation 2.115 for the v?-f model.

Note that the use of the buoyant vorticity generation model and Rodi buoyancy model
has not been evaluated with the v?-f model.

2.6.11 Turbulence closure model constants

For each of the afore-mentioned turbulence closure models, there are several constant coef-
ficients which may be modified by the user in the input deck. Tables 2.1, 2.2, 2.3, and 2.4
list these parameters, their mapping to input deck names, and default values. Each of these
default values may be modified by the user by specifying the respective Turbulence Model
Parameter line in the Global Constants block under the Sierra domain.
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2.7 Wall Boundary Conditions for Turbulence Models

2.7.1 Resolution of Boundary Layer; Momentum

The wall velocity boundary condition is the typical no-slip boundary; a specified value is
expected.

2.7.2 Resolution of Boundary Layer; Turbulence Quantities

The resolution of the boundary layer is expected when the low Reynolds number or v%-f
model is in use.

For the v2- f model, the wall turbulent kinetic energy and normal fluctuating stress com-
ponent are each zero while the dissipation rate is given by

ok'/??

w =2
¢ Va.f(]j

(2.160)

For the low Reynolds number, the wall turbulent kinetic energy is again zero while the
dissipation rate, here considered to be the isotropic dissipation rate, is given as zero.

2.7.3 Resolution of Boundary Layer; Enthalpy

The wall value of enthalpy is computed based on the specified temperature and either ref-
erence or local mass fractions. In the case of a heat flux boundary condition, the wall node
value is computed based on the control volume balance.

2.7.4 Wall Functions for Turbulent Flow Boundary Conditions

Resolution of the near-wall turbulent boundary layer can require extensive mesh points.
Adjacent to the wall exists an extremely thin viscous sublayer where these forces dominate
and are relatively insensitive to free stream parameters. Following the viscous sublayer is
a buffer layer, the so-called “log-layer" and, ultimately, the turbulent core. The Van Driest
hypothesis of turbulent flow near solid boundaries can be used to derive the appropriate
form of this log-law zone. In general, the use of wall functions eliminates the need to resolve
the near wall layers by prescribing the wall shear stress and resulting force based on the law
of the wall (Launder and Spalding [32]).

The primary assumptions of the law of the wall are

e local equilibrium of turbulent kinetic energy production and dissipation,
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e constant shear stress within the log-law region,

e Couette flow (pure shear flow).

2.7.5 Wall Functions; Momentum

The wall shear stress enters the discretization of the momentum equations by the term

/Tijnde = _Fwi~ (2161)

Wall functions are used to prescribe the value of the wall shear stress rather than resolving
the boundary layer within the near-wall domain. The fundamental momentum law of the
wall formulation, assuming fully-developed turbulent flow near a no-slip wall, can be written
as (Launder and Spalding [32])

1
ut = e ~In (Ey*), (2.162)

where u" is defined by the the near-wall parallel velocity, w, normalized by the wall friction
velocity, u,. The wall friction velocity is related to the turbulent kinetic energy by

u, = CYE2, (2.163)

by assuming that the production and dissipation of turbulence is in local equilibrium. More-
over, y* is defined as the normalized perpendicular distance from the point in question to

the wall,
v y 1/2 Yo
yt =" (T—) = Pt (2.164)
o\ p fu
The classical law of the wall is as follows:
1
u"==In(y")+C (2.165)
K

where « is the von Karman constant and C' is the dimensionless integration constant that
varies based on authorship and surface roughness. The above expression can be re-written
as

wt = %ln(yﬂ + %ln(exp(/@C)) (2.166)
ut = % (In(y™) + In(exp(rC))) (2.167)
= %ln(Eer) (2.168)

where E is referred to in the text as the dimensionless wall roughness parameter and is
described by
E = exp(kC) (2.169)
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In Fuego, k is set to the value of 0.42 while the value of F is set to 9.8 for smooth walls!.
The viscous sublayer is assumed to extend to a value of y* = 11.63.

The wall shear stress, 7,,, can be expressed as

UH__ PRU

Y PR A, 2.170
wr = I (B Y uj (2.170)

2
Tw = PU; = PlUs

where \,, is simply the grouping of the factors from the law of the wall. For values of y™ less
than 11.63, the wall shear stress is given by
_

Tw = i (2.171)
p

The force imparted by the wall, for the iy, component of velocity, can be written as
where A, is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to specifying the
force imparted on the fluid by the wall. As shown in Equation 2.172, the velocity component
parallel to the wall must be determined. Use of the unit normal vector, n;, provides an
easy way to determine the parallel velocity component by the following standard vector
projection,

IL;; = [6;; — niny] . (2.173)

Carrying out the projection of a general velocity, which is not necessarily parallel to the wall,
yields the velocity vector parallel to the wall,

J=Lj#5
Note that the component that acts on the particular i component of velocity,

provides a form that can be potentially treated implicitly; i.e., in a way to augment the
diagonal dominance of the central coefficient of the i*" component of velocity. The use of
residual form adds a slight complexity to this implicit formulation only in that appropriate
right-hand-side source terms must be added.

2.7.6 Wall Functions; Turbulent Kinetic Energy

The near wall turbulent kinetic energy can be obtained by two different procedures. The
most common approach is to solve a transport equation for the near wall value of turbulent

!'White [33] suggests values of x = 0.41 and E = 7.768.
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kinetic energy with a modified production and dissipation term on the right hand side of the
turbulent kinetic energy equation, Equation 2.103. As will be shown below, the form of the
near wall production and dissipation term are determined based on equilibrium arguments,
ie., P, = pe.

Another common approach is to assign the value of turbulent kinetic energy that strictly
results in the equality P, = pe. In this formulation, it is assumed that the convection and
diffusive flux is zero across the control volume.

Both procedures, which formally do not address the role of buoyancy production, begin
with the determination of the near wall value of the production of turbulent kinetic en-
ergy. The turbulent kinetic energy production term is consistent with the law of the wall
formulation and can be expressed as

aU”
Piw = To—. 2.176
The parallel velocity, u), can be related to the wall shear stress by
ut u
— = [—r. 2.1
T, 21

Taking the derivative of both sides of Equation 2.177, and substituting this relationship into
Equation 2.176 yields,

p o

w Oyt

Applying the derivative of the law of the wall formulation, Equation 2.162, provides the

functional form of du™ /Oy™,

ou™ o [1 1

—=——|-In(Ey")| = — 2.179

oyt 3y+[ n y)] ( )

K Kyt
Substituting Equation 2.179 within Equation 2.178 yields a commonly used form of the near
wall production term,

(2.178)

2

Prw = .

(2.180)

Assuming local equilibrium, P, = pe, and using Equation 2.180 and Equation 2.163 provides
the form of the near wall turbulence dissipation,
ud 03/4 L3/2

=—"L = 2.181
€ /f}/p /‘{3}/;7 ? ( )

while the form of the wall shear stress is given by,
Tw = pC%k (2.182)

Under the above assumptions, the near wall value for turbulent kinetic energy, in the absence
of convection, diffusion, or accumulation is given by,

u2

k=7 (2.183)
“w
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If the second method (Dirichlet condition on near wall turbulent kinetic energy) is to be used,
the value of the wall friction velocity, u,, can be obtained in an iterative manner (Sondak
and Pletcher [34]) by use of Equation 2.162. This method has been used and shown to be
satisfactory (Elkaim [35]) and strictly enforces the assumptions of the law of the wall that
have already been outlined.

In the method that elects to solve a near wall turbulent kinetic energy transport equation,
the production and dissipation terms in the turbulent kinetic energy transport equation are
[potentially| given by Equation 2.180 and

03/4/€3/2

—_ 2.184
i (2184

—pe=—p

Unfortunately, there does not seem to be one universal description of the near wall turbulent
kinetic energy production term and dissipation term, Equation 2.180 and 2.184, respectively.
For example, in the law of the wall formulation, given by Launder and Spalding [36], the
near wall production term is given by,

Gl

2.185
m (2.185)

Pkw:Tw

In this formulation, the wall shear stress is given by the law of the wall formulation, Equation
2.170, providing the value of y* is greater than 11.63 (otherwise, it is given by the laminar
shear stress, Equation 2.171). The dissipation term, —pe is given by

03/4k‘3/2
— pe = —p“—Y In Ey*. (2.186)
K

p

Note that in the absence of convection, diffusion or accumulation, the above two forms of
the near wall production and dissipation source terms revert to Equation 2.183. Therefore,
if the modeled flow is consistent with the law of the wall formulations, all methods should
yield similar limiting behavior. Under conditions of non equilibrium, i.e., a separated flow,
or values of y* within the viscous sublayer, some models may perform better. However, it
is important to note that if the flow to be simulated includes separation and reattachment,
or the computation mesh is such that y* is within the viscous sublayer, the law of the wall
formulation can provide non sensical results.

In Fuego, there are currently two general supported methods from which to choose when
applying the near wall turbulent kinetic energy boundary condition. The first method,
which can be activated by the command line omit near wall turbulent ke transport
equation, is the form of Equation 2.183 that enforces a Dirichlet condition. The second
method is to solve a full control volume balance for the near wall turbulent kinetic, with
convection and diffusion terms, with a modified production and dissipation term given by
either

e Equations 2.180 and 2.181.
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e Equations 2.185 and 2.186

The use of Equations 2.180 and 2.181 can be activated by the command line (within the
wall be block) use equilibrium production model which is based on the ability to express
the wall shear stress consistent with the assumptions of full equilibrium between production
and dissipation, Equation 2.182. In all cases that do not set a Dirichlet condition for the
turbulent kinetic energy, the assembled buoyancy source terms are not removed.

2.7.7 k-w SST Wall Functions; Turbulent Kinetic Energy

When a Dirichlet condition is not set for turbulent kinetic energy, the approach in modifying
the near wall production and dissipation terms is followed.

In this approach, the equation for & is solved near the wall to remove the assumptions of
log layer flow one level. However, we invoke the log layer assumption to write,

7_2

P. = w__ 2.1
Ty (2.187)

Balancing production and dissipation in the £ — w model allows us to write,

ud (ﬁ/)3/4k:3/2
P, =p— = .
k pFLY;, P kY,

(2.188)

The dissipation rate is also modified accordingly such that the production equality with
dissipation is retained. An alternative method is to use the approximation of of Launder
and Spaulding which prescribes production as,

u
&:m%. (2.189)

p

In practice, this formulation seems to be less stable since the production and dissipation
terms are now in near-equilibrium.

2.7.8 Wall Functions; Turbulence Dissipation Transport

Consistently within the literature, the near wall turbulence dissipation is assigned the Dirich-
let value given by Equation 2.181. Frequently, this expression is lagged by one subiteration
in an effort to maintain consistency between the Dirichlet wall condition and the freezing of
the €/k ratio of the turbulence dissipation equation, Equation 2.104.
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2.7.9 Wall Functions; Turbulent Frequency Transport
Low Reynolds Number Treatment

The low Reynolds approach for k£ —w uses a sequence of Dirichlet conditions similar to what
is used for k — e. However, unlike the latter, k£ — w requires no extra damping terms near the
wall. When the wall is resolved, exact Dirichlet conditions are known for both the velocity
and k:

u =0, k=0. (2.190)

A Dirichlet condition is also used on w. While the k — e model is rendered less stable because
k appears in this boundary condition, the w equation depends only on the near-wall grid

spacing. The boundary condition is

6
W= 6—; (2.191)

which is valid for y* < 3. Above, 3 depends on the model type. If SST is in use, 8 = [,
while if the Wilcox model is in use, 8 = (.

High Reynolds Number Treatment

The high Reynolds approach is also quite similar to the & — ¢ model except w is handled
differently.

Automatic Wall Functions

Because w has analytic solutions in both the log layer and viscous sub-layer, an automatic
treatment is developed that blends those two solutions to provide Dirichlet conditions for
all y. Let w, be the high Reynolds number formulation and w; be the low Reynolds version.
Then the Dirichlet condition on w is

2
w=w1+ (ﬂ) . (2.192)

However, u, for the high Reynolds w value is computed based on the parallel velocity: The
velocity equation is augmented by a traction force based on the friction velocity u,. This
quantity may be solved for iteratively using the law of the wall. A Dirichlet condition is also
used for k, assuming it is in the log region, which is similar to the & — € model:

2

k= \/é_ (2.193)

In the case of w, an analytic expression is known in the log layer:

Uy

VB Ry
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which is independent of k. Note that some implementations use a predefined constant instead
of /B, although the standard values are consistent with these expressions. Because all these
expressions require y to be in the log layer, they should absolutely not be used unless it can
be guaranteed that y* > 10, and y* > 25 is preferable.

Gl

ml (2.195)

U, =

The automatic wall function approach is obtained by removing the “omit near wall turbulent
ke equation” line command and activating either the SST or KW turbulence models.

2.7.10 Wall Functions; Enthalpy Transport

For non-adiabatic boundaries, heat loss to the wall must be considered. The use of the
Reynolds analogy provides a functional form of the energy transport similar to the that of the
logarithmic law-of-the-wall momentum formulation. The thermal boundary layer is modeled
either as a linear profile (y* < 11.63) where the thermal boundary layer is dominated by
conduction or a logarithmic profile where the effects of turbulence dominate over thermal
conduction, Versteeg and Malalasekera [37].

The law-of-the-wall used in Fuego has the following form,

p (hw — hp) ur

s (2.196)

Guw =

where
T =or [ut + P]. (2.197)

The role of T is to account for the fact that the thickness of the thermal conduction layer
is [practically| of a different size than that of the viscous sublayer (momentum).

In the above equation, P is the universal “P function” (Jayatilleke [38]) and can be
expressed as a function of the molecular and turbulent Prandtl number,

o 0.75
P =924 [(—) —1
or

where o and o represent the turbulent and molecular Prandtl number, respectively.

(1 +0.28¢xp [—0.0071D : (2.198)

ar

Therefore, it is seen that the so-called “P function" is the parameter that functionally
changes the thickness of the thermal conduction layer from that of the viscous sublayer.
For example, if one were to model a high-Prandtl number fluid such as common vegetable
oil, one would note that the thickness of the viscous sublayer is far greater than that of
the thermal sublayer. However, for low-Prandtl number fluids, the opposite is true. The
subsequent value of T'" ensures this functionality.
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In the case of a user defined heat flux at a wall boundary condition, the full quantity is
assembled as a right-hand-side source term. As a post processing step, Equation 2.196 (in
temperature form) is rearranged to provide the wall temperature. In practice, the heat flux
boundary condition block is to be defined on an already defined wall boundary condition
block (without temperature specification). In this manner, multiple boundary conditions are
“painted” on a particular sideset.

2.7.11 'Wall Functions; Scalar Transport

Wall functions for use in a convective diffusive problem, e.g., diffusional transport of fuel
(through multicomponent evaporation) from a jet fuel pool, are not currently supported.

2.8 Inlet Conditions for Turbulence Quantities

2.8.1 Turbulent Kinetic Energy

The inlet turbulent kinetic energy must be specified for any simulation that involves a
velocity-specified inlet. If actual values of the inlet turbulent kinetic energy are not avail-
able, then a suitable value based on basic definitions is used. In general, the kinetic energy
associated with the turbulent flow is defined by,

1/
k=3 (u’2 TR 4 w’2> . (2.199)

The turbulence intensity T;, is related to the kinetic energy by,

o'

3

T, =
Uref

(2.200)

Rearranging Equation 2.200 for the turbulent kinetic energy yields a working form for the
specification of inlet turbulent kinetic energy based on a reference velocity, Uy,

k=2 (UpefTin)* . (2.201)

DN o

The value of U, can typically be taken to be the magnitude of the velocity.

2.8.2 Turbulence Dissipation Rate

As with the turbulent kinetic energy inlet condition for specified velocity, the inlet value
of the turbulence dissipation rate must also be specified. If values are known, for instance
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based on experimental data, then the available data should be used. Otherwise, the following
assumed form of the turbulence dissipation rate is used,

k’3/2
€= 03/47, (2.202)

where [ = 0.07L; L represents a characteristic length scale of an inlet eddy and k represents
the inlet turbulent kinetic energy as determined above.

2.9 EDC Turbulent Combustion Model

The combustion submodel is Magnussen’s Eddy Dissipation Concept (EDC) and develop-
ment details can be found in Magnussen, et al. [39], Magnussen [40], Byggstyel and Mag-
nussen [41], Magnussen [42], Lilleheie, et al. [43], and Gran and Magnussen [44].

2.9.1 Model Characteristics

The underlying assumption in the EDC model is that combustion in turbulent flows is con-
trolled by turbulent mixing. The combustion model is an algebraic zone-type model and is
influenced by local cell (control volume) values only. The model derivation assumes that the
minimum cell dimension is large relative to the thickness of a flame (reaction zone) structure.
This thickness varies with strain-rate, but the cell size should not be less than a few millime-
ters. The equations are not valid for laminar or near-laminar flow, but are based on fully
developed turbulence arguments. The turbulent combustion model uses information from
three sources: 1) thermochemistry, 2) species and state information from the cell values, and
3) turbulence kinetic energy and dissipation. From these data, the model creates source/sink
terms for species equations and the energy equation (via radiative transport).

The model function is to provide an integral effect of combustion processes occurring
within the control volume for the duration of a time-step. In this manner, reaction zone
structures are not resolved, but the aggregate effect of turbulent combustion is modeled. To
model the integral effect, two homogeneous zones are defined within each control volume
for which there is combustion, as shown in Figure 2.3. The zones are termed the reaction
zone (fine structures) and the surrounding zone. The size and mass exchange rate between
these zones are influenced by the local turbulence properties and are the principal means
by which turbulent fluctuations are accounted for within the model. The assumption that
each zone is homogeneous is equivalent to assuming that the mixing within each zone is
instantaneous. Since combustion occurs within (but is not limited to) the reaction zone, the
assumptions for combustion correspond to those for a perfectly stirred reactor (PSR). Slower
reactions can also occur in the surroundings, in which case, the assumptions for reaction in
the surroundings are also consistent with PSR assumptions.
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Figure 2.3. Model geometry for Magnussen’s Eddy Dis-
sipation Concept. The control volume is comprised of two
zones; the properties of each zone are assumed to be ade-
quately represented by a single set of values (i.e., lumped or
perfectly stirred). The mass exchange between the zones is
controlled by turbulent mixing.

2.9.2 Physical Interpretation

Magnussen’s EDC model is derived to be a general combustion model for premixed to non-
premixed scalar fields and for high to moderate turbulence levels. It is not intended to be
used for laminar combustion. Magnussen’s physical interpretation of combustion is based on
the concept that chemical reaction occurs in regions of the flow in which the dissipation of
turbulent energy takes place, i.e., fine structure regions. These regions are concentrated in
isolated volumes and represent a small fraction of the flow. The regions have characteristic
dimensions that are of the Kolmogorov length scale in one or two dimensions, but not the
third.

Fires are buoyant flows. Turbulent fires tend to be large, having base diameters above a
meter. The turbulent length scales are large and the flow velocities are relatively slow, on the
order of meters to tens of meters per second. (Still photographs of reaction zone structure
within large fires can be found in Tieszen, et al. [45]). Therefore, turbulence levels tend to be
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moderate. Near the base of a fire, the combustion zone can be characterized as a continuous
wrinkled flame sheet that appears to wrap around larger turbulent structures. The basic
combustion mode is that of a strained diffusion flame with large surface area due to the
turbulence. At higher elevations in the fire, turbulence levels increase and the character may
change. Premixed combustion is possible as unburned products in the smoke are re-entrained
into the fire. While Magnussen’s model was originally derived in terms of high turbulence
levels resulting in fine structure regions (i.e., localized regions of high vorticity at dissipation
scales), the model is appropriate for moderate turbulent intensities that occur in fires.

Figure 2.4 shows the physical geometry from which the combustion model will be derived
for fires. Turbulence controls the reaction and surrounding volume fractions and fuel mass
transport per unit volume. In general, turbulent momentum exchange processes result in
scalar stirring at all length scales down to molecular mixing processes which are diffusion
controlled. Without length scale information below the grid scale of the computation, it is
impossible to correctly represent the interactions between all the relevant physical processes
at their relevant length scales.

Magnussen’s EDC model attempts to represent the mixing processes that are most im-
portant to the overall heat release from combustion. It it based on the assumption that the
overall heat release rate is controlled by the mass transport into the reaction zone. There-
fore, considerable effort is made to model turbulent momentum processes that affect mass
transport into the reaction zone. In the surrounding gases, turbulent mixing occurs with
(in all likelihood) a similar vigor, however, its effect on the combustion rate is considered
less important since the turbulence is not directly contributing to mass transport into the
reaction zone. For this reason, there are two different levels of mixing assumptions made
within the model.

With respect to Figure 2.3, the turbulence level in each control volume is taken into
account in the consideration of the mass exchange between the reaction zone and the sur-
rounding zone. However, within each zone, it is assumed that the properties are instanta-
neously homogeneous and uniform, i.e., perfectly stirred. This perfectly stirred assumption
obviously over-predicts mixing within each zone for any real level of turbulence, and only
begins to approximate reality at the highest levels of turbulence. On the other hand, the per-
fectly stirred assumption allows point calculations to be made in each zone for conveniently
determining thermochemical properties. Without this assumption, it would be necessary to
specify the gradients within each zone and integrate the specified gradients throughout the
cell to obtain cell averaged property information. The approach here is to assume that over-
predicting mixing within each zone via the perfectly stirred assumption has only a secondary
effect on heat release rates within each cell.

2.9.3 Thermochemistry

Within the current strategy, chemical reaction can occur in both zones. However, in the
simplest case, no reaction occurs within the surroundings due to the low temperature and
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Figure 2.4. Assumed flame surface geometry. L is the
integral turbulent length scale. The reaction zone thickness is
characterized by the Kolmogorov dissipative turbulent length
scale, 7.

unmixedness; all reaction occurs within the reaction zone. The notion of zones, perfect
stirring within the zones, and type of chemistry involved are all independent assumptions,
but have interrelated consequences. For example, finite-rate chemistry involving hundreds
or thousands of species could be considered within the zones. From the perfectly stirred
assumption within each zone, the finite-rate chemistry would be calculated as if it were
occurring in a perfectly stirred reactor. In a real diffusion reaction, there are spatial variations
in species concentrations for real turbulence levels so that the various chemical pathways,
as well as heat, mass, and momentum transport, in a real strained diffusion flame can be
quantitatively different than those calculated on the basis of perfect stirring. This effect
is probably the strongest disadvantage of the perfectly stirred assumption. Only in the
limit of infinitely-fast turbulent mixing does perfect stirring actually exist. In practice, the
computation of detailed, finite-rate chemistry concurrently with a three-dimensional fluid
mechanics calculation is expensive. Except in the limit where the turbulent strain rate is
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high enough that finite rate chemistry is warranted, it is adequate to use simpler descriptions
of the chemistry. In the case of high strain rates, precalculation of the chemistry is usually
done and the results tabulated in a look-up table to determine extinction limits.

For the current implementation, it is assumed that the chemistry can be represented as
irreversible, “infinitely-fast” reactions that occur within each reactor. In classical combustion
studies, the concept of “infinitely-fast” reactions is not usually invoked in the context of a
perfectly stirred reactor. In the context of the current model, the meaning of an “infinitely-
fast” reaction in the flame zone (a perfectly stirred reactor) is that the reactant stream
entering the reaction zone is converted to products instantly as it enters the zone, and
then the products are mixed instantly throughout the zone. The zone then reflects the
thermodynamic properties of the combustion products at the adiabatic flame temperature
for a given composition while the surrounding zone has the properties of reactants (and
possibly previously combusted products) near the cell temperature.

In general, if the turbulent mass exchange rate between the zones (i.e. strain-rate) is
sufficiently high that infinitely-fast chemistry assumptions do not apply, then finite-rate re-
actions within the perfectly stirred reactor can be used. Residence time scales that warrant
finite-rate considerations tend to be at the sub-millisecond level. In the current implementa-
tion, the case of high turbulence levels leading to blow-out of a reactor is treated as a limits
test. The test method is discussed in Section 2.9.9.

In principle, it is not necessary to assume irreversible chemistry within each zone. At
long time scales (i.e., low turbulence levels), chemical equilibrium will result. The use of
irreversible chemistry avoids the need to calculate the equilibrium state of the forward and
reverse reactions for every combusting cell at every time step. For the current implementa-
tion, the time savings is deemed to be worth the cost in accuracy.

Regardless of the assumptions about chemistry employed in modeling the reaction zone,
the actual reaction zones in a fire will very likely be similar to strained diffusion flames
(wrinkled flame sheets wrapped into vortical structures). Perhaps higher in a fire with the
re-entrainment of smoke, partially premixed combustion can occur. For diffusion reactions,
combustion occurs within a region encompassing a stoichiometric surface between fuel and
air. Therefore, the reaction zone is modeled as occurring with stoichiometric reactions.
The reactants being transported into the reaction zone via turbulent mixing come from
the surroundings zone and thus have the composition of the surroundings. There will be a
limiting amount of one reactant if the combustion is to occur at off-stoichiometric conditions.
The excess of the other reactant, prior products, and inerts do not participate in chemical
reactions, but are transported in and out of the combustion zone by turbulent mixing.
However, their presence affects the zone properties (for example, through their heat capacity).

Combustion products are transported into the surroundings at the same rate as the
reactants are transported into the reaction zone (conservation of mass). However, the perfect
stirring assumption for properties means that these products have uniform properties. In a
diffusion reaction, products mix with fuel on one side of the reaction zone and air on the
other. On the fuel side of the reaction zone, significant amounts of CO and soot can result
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from interaction between the inflowing fuel and outflowing products. The formation of CO is
important not only from a toxic pollutant perspective but its formation results in significantly
less heat release and lower temperatures. Given the limits of a two-zone model with perfect
mixing within each zone, there is no simple way to model both stoichiometric combustion and
the formation of CO on the fuel side of the reaction. In the current formulation, an ad hoc
approach is used in which combustion in the reaction zone is assumed to occur in sequential
steps, each of which is irreversible and infinitely fast. The first step is stoichiometric oxidation
of the fuel species to CO and Hy products. The second step is the oxidation of CO and H, to
CO5 and H50 provided there is excess O5 in the reactant stream. If the overall stoichiometry
in the control volume is fuel rich, significant amounts of CO and Hy will be formed, while if
it is lean only CO5 and H,O will be formed.

2.9.4 Chemical Mechanism

For an arbitrary CHNO fuel, the stoichiometric, irreversible reaction to CO and H, products
is given by

m—q .
C,,H,N, O, + (T) O, + Z ((p) Diluent =

(m)CO + <g> H, + (g) Ny + 3 (Cp) Diluent, (2.203)

where m, n, p, and ¢ are the numbers of carbon, hydrogen, nitrogen, and oxygen atoms
within the fuel molecule, respectively, and the terms in parentheses are the stoichiometric
coefficients. The summation term for diluents includes all other species present in the reac-
tion stream including nitrogen in air, combustion products in the surroundings from previous
combustion processes, etc... Diluents, including the combustion products, are assumed to
have no effect on the chemical reaction itself. However, diluents do have an effect on the
temperature rise through their specific heats and the presence of products is used as an
ignition criteria for the combustion model.

The assumption that combustion products act like diluents (i.e., have no effect on the
reaction) is obviously a simplification. Product species include CO, Hy, CO,, and H5O.
The presence of CO and H, in the reactant stream would affect equilibrium results; however,
irreversible reactions have already been assumed in the model so the presence of these species
does not represent an additional simplification. On the other hand, the presence of large
amounts of COy and Hy0O in the reactant stream may reduce the amount of Oy consumed
for a given amount of fuel due to partial oxidation of the products via the oxygen in the CO4
and HyO in an overall fuel rich environment. However, this effect is partially compensated
since the extra O, would be consumed by the second reaction.

The second reaction is the subsequent oxidation of CO and Hy to COy and HyO. This
reaction oxidizes both the CO and Hy produced by the first reaction and any CO and H,
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that passed through the first reaction as products (i.e., diluent). The reaction is given by

(E) Ny + (@ + %) O, + Z ((q) Diluent =

(m)CO+<g)H2 + (5 :
(m)COs + (g) Hzo+(§) Ny + 3 (¢) Diluent. (2.204)

In the current implementation, soot is considered to be a trace species. As such, its mass
and energetics are not considered part of the above chemical reactions. Soot has its own
production terms and is considered to oxidize in proportion to the fuel oxidation in the first
reaction. See the soot model in Section 2.11 for details.

2.9.5 Species Consumption/Production Limits

The reactants being transported into the reaction zone come from the surroundings and
therefore have the same composition as the surroundings. As such, the reaction can only
proceed within the limits of available fuel and oxygen from the reactant stream. For example,
if there is insufficient oxygen in the reactant stream, then all of the oxygen will be consumed
by Reaction 1, (Equation 2.203), and the excess fuel will be passed with products from
Reaction 1 to Reaction 2, (Equation 2.204). Reaction 2 will not take place because all the
oxygen was consumed in Reaction 1 (i.e., in both reactions, oxygen is limiting). If there is
insufficient fuel in Reaction 1, then all the fuel will be consumed and excess oxygen will be
passed to Reaction 2. Depending on the ratio of oxygen to CO and Hs, all the secondary
fuels may be consumed or all the oxygen may be consumed.

To find the limiting mass, it is convenient to define an equivalence ratio. Equivalence
ratios are normally defined in terms of molar ratios, but mass ratios yield the same result [46]
and are preferred here since mass fractions are used in the transport equations.

(quel )
}/oacy mix
(quel )
YVOI?/ stoic
The numerator is the ratio of the actual mass of fuel to oxygen in the reactant stream,

Yiel _ mass Fuel
Yooy ) imin ~ mass Oxygen

o = (2.205)

(2.206)

mix

The denominator is determined for each reaction. Generically, the first and second reactions
have the following form

> (Cpuet) Fuel + C0,05 + > (¢p) Diluent = > (Goroa) Product + Y ~ (¢p) Diluef207)
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where ( are stoichiometric coefficients on a molar basis. The stoichiometric fuel to oxygen
mass ratio is

quel _ Z quel (Cfuel) (2208)
Y;m:y stoic W02 (<02> 7

where W is a molecular weight. Specifically for the first reaction, the stoichiometric mass
ratio of C,,H,,N,O, to O is

12 14p + 1
_ (L2m A n+ 1p + 16g) (2.209)

stoic 32 (m; q)

Therefore, the equivalence ratio for the first reaction which is based on carbon monoxide and
hydrogen products is given by

Y, 1 —
o, =  Jud 6(m—q) , (2.210)
Youy ) (12m +n + 14p + 16q)

Yiuer
)/oxy

and similarly, the equivalence ratio for the second reaction which is based on carbon dioxide
and water products is given by

n

(Y 4V 16 (m+3)

D, = . (2.211)
Youy (28m + n)

If either equivalence ratio is greater than unity, then the mass of oxygen will be completely
consumed by its reaction. If either equivalence ratio is less than unity, then the mass of
fuel will be completely consumed by its reaction. If either equivalence ratio is unity, then
the mass of fuel and oxygen will both be completely consumed by that reaction. Note that
C,,H,N, Oy is not a fuel in the second reaction because if there is any of this fuel left, all
the oxygen was consumed in the first reaction. Therefore, under these conditions the second
reaction cannot proceed due to lack of oxygen. Also note that the expression for ®, does
not identify which secondary fuel, CO or Hs, is limiting.

In order to determine the limiting reactant mass in a multi-fuel (or multi-oxidant) system,
a more general approach based on equivalence ratios is required. Consider the reaction
(aA+ (B — (cC + (pD where ( are stoichiometric coefficients. The stoichiometric mass
ratio of reactant B to A is

Y; W
Yo| _messs) _ Walp (2.212)
YA stoic massS4 stoic WACA
Further, Y4 and Yp are the mass fractions of A and B in the mixture and
Yp mass B
— = ) 2.213
Y mass A| . ( )
The ratio of these quantities is an equivalence ratio; i.e., if
Y W
Ye , Wals (2.214)
Yi~ Wala
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then A is the limiting reactant, else B is the limiting reactant. However, this inequality can

be usefully rearranged. If
Ya Yp

< )

WaCa  Whg(p

then A is the limiting reactant. The same procedure can be shown to apply to reactions
where there are more than two reactants; i.e., if

Ya Yp Y,

(2.215)

- i 2.216
WaCa  Wg(s WG ( )
then A is the limiting reactant of n reactants. Therefore,
. : Y,
First Reactant Depleted = min <W c > : (2.217)

Note that the units of Y,,/W,.(, are [(mass 1)/ (mass n)goic]|/(Mass) .. Also note that
diluents are not reactants and they are not depleted by the reaction. The min() function
should only be applied to fuels and oxygen, not to all species.

To determine the change in mass fraction, AY;™, of reactant species k£ due to reaction m,
multiply the limiting mass expression by the stoichiometric mass of species k:

AY™ Wi¢p" min ( Y )m (2.218)
This expression has units of [(mass k)siic/(Mass n)stoic] X [(Mass 1)/ (Mass)y|. Since
n is the limiting reactant, the expression within the second set of square brackets is the
change in mass fraction of species n due to reaction m; this is because the limiting species
n is completely used up in the reaction (i.e., the mass fraction of species n goes to zero).
The expression within the first set of square brackets modifies the change in mass fraction
of species n to yield the change in mass fraction of species k due to reaction m. The change
in mass fraction of product species k in reaction m is similar but without the minus sign in
the above expression.

Since the reactions are given priority, the “products" of Reaction 1 are the ‘“reactants" of
Reaction 2. The new mass fractions in the reactant stream for Reaction 2 are given by

<Yk)Reaction 2 reactants (Yk)surr + AYkReaCtion 1' (2219)

As noted above, the sign of the second term, +AY,Reaction 1 ig nositive for products and
negative for reactants. Similarly, the product composition from Reaction 2 is given by

+ AYkReaCtion 2' (2220>

(YIC)Reaction 2 products = (Yk)Reaction 2 reactants

Here again the positive sign on the second term is used for products and negative sign is
used for reactants. Since the reactions are assumed to occur infinitely fast, the product
composition for Reaction 2 is the composition of the reaction zone,

(Yk)ﬂame = (Yk)Reaction 2 products * (2221)
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2.9.6 Conservation Laws

For convenience we restate the Favre-averaged species mass conservation equation, Equa-
tion 2.98,

0pYi, o pooow\ oYy /.—
Viinds = [ (24 #) 2k, 2.222
g dV+/,0 wUn;dS /(Sc + S, 8xjn3d5+ widV, ( )

where p is the time averaged density of the mixture, Y is the Favre-averaged mass fraction
of species k, u; is the Favre-averaged velocity of the mixture, pu,; is the turbulent eddy
viscosity, Sc; is the turbulent Schmidt number, and @y, is the time-averaged mass production
rate of species k per unit volume of the mixture. This equation is solved on a mesh, one
control volume of which is shown in Figure 2.3. Within the control volume, the species k
mass consumption/production rate, 1 consumed/produced = Wi Ve, is determined by the EDC
model, assuming that the mass transfer process into and out of the reaction zone from the
surroundings (cf. Figure 2.3) can be represented as a steady process,

(mk)consumed/produced = (mk)flame - <mk)surr . (2223)

The mixture mass flow rate between the surroundings and the reaction zone is also assumed
to be steady,

(1) pame = (11) (2.224)

Combining these two expressions yields

(mk)flame (mk)
(mk>consume roduce. = . - . e (m) ame
4/produced (m)flame (m>su7'7* N
= [(Yk)flame - (Yk)surri| (m)flame : <2225)

It is convenient to normalize this equation with the mass of the control volume, or

(1) d/produced (1) gy
consumed/produced _ Y, —(Y; } ﬂ. 2.226
Mcell [( k)flame ( k)surr‘ Mcell ( )

The term in the brackets is a function of thermochemistry only and is specified by the
chemical processes derived in the previous section. The second term, the normalized mass
transfer rate, is a function of the turbulent mass exchange rate between the reaction zone
and its surroundings. The derivation of this term is the subject of the next subsection.

2.9.7 Effect Of Turbulence On Combustion Rates

Magnussen derived the effect of turbulence on combustion rates in terms of high turbulence
levels. The derivation here will be for moderate turbulence levels for the flame geometry
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shown in Figure 2.4. The derivation herein does not include proportionality constants.
Rather, dimensional reasoning is used to establish the relationship between reaction zone
surface area, volume, and mass transfer rates with respect to the prevailing turbulence levels.
Constants of proportionality, taken from Magnussen’s original derivation, are added at the
end.

Characteristic scales are needed for the mass transfer velocity into the reaction zone, the
reaction zone surface area, and the reaction zone thickness. The mass transfer velocity into
the reaction zone is a velocity appropriate to diffusional length scales that are being modified
by the local strain field induced by the turbulent flow,

Mass Transfer Velocity o v. (2.227)

An appropriate diffusional velocity is the Kolmogorov velocity, v, which is characteristic
of dissipative length scales (i.e., those in which the local strain field is being dissipated by
diffusional effects). From Kolmogorov’s definition, v is given by

v = (ve)/*, (2.228)

where v is the molecular mixture kinematic viscosity (evaluated at the surrounding temper-
ature), and € is the rate of kinetic energy dissipation.

The reaction zone is characterized as a continuous flame sheet, highly wrinkled and
wrapped around large eddies. The volume of a large eddy is characterized by

Volume,gq, o< L, (2.229)

where L is the characteristic integral length scale of the turbulence. The reaction zone area is
assumed to be proportional to both momentum and scalar influences. While all length scales
of the turbulent cascade contribute to wrinkling and stretching the flame, it is assumed that
large changes in surface area are associated with large length-scale fluctuations. Therefore,
it is assumed that the square of the integral length scale is the most appropriate turbulent
length scale for characterizing the reaction zone area.

Species concentrations also affect reaction zone area. Obviously, if no fuel is present, no
reaction zone will be present regardless of level of turbulence present. The species influence
are denoted by a function, y, the rationale of which will be described later. Based on these
arguments,

Area figme L. (2.230)

To obtain property values for each zone in Figure 2.3, it is necessary to define the volume
fractions of the reaction zone and surrounding zones. The reaction zone volume fraction is
based on a reaction zone area and a reaction zone thickness. Since the reaction zone is a
strain modified diffusional zone, its thickness is best modeled with a diffusional length scale
that is characteristic of the turbulence-induced strain field. Thus the reaction zone thickness
is proportional to the Kolmogorov scale, 7,

Thickness figme X 7. (2.231)
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Kolmogorov’s definition of the diffusive length scale is

= <”—3)1/4. (2.232)

€

Since this is a characteristic scale analysis, the molecular mixture viscosity is evaluated at
the surrounding temperature. The actual reaction zone thickness will be larger due to the
volumetric expansion (i.e., lower density) in the reaction zone.

Based on these characteristic scales from the assumed reaction zone geometry in Fig-
ure 2.4, expressions can be obtained for the mass transfer rate per total mass. The mass
exchange rate into the reaction zone per unit eddy mass is given by

M flame _ (mflame) (Meddy) . (2.233)
M, cell M, eddy Mcell

The first term on the right hand side is given by

Mflame  (SurroundingDensity) (FlameArea) (MassTransferVelocity)
Meaay (EddyDensity) (EddyVolume)

. (2.234)

The interpretation of the second term on the right hand side depends upon filtering used (i.e.,
averaging over scales). For LES, the length scale of the eddy being modeled is proportional
to the length scale of the grid. In this case, the size of the eddy and the grid are the same.
Therefore, the second term is unity. In RANS modeling, the eddy is much larger than the
grid, as is the reaction zone surface being modeled. For RANS; it is assumed that averaged
over a sufficient number of eddies, the mass exchange rate into the reaction zone per unit
eddy (first term) is uniformly distributed (i.e., independent of length scale) up to the integral
length scales. In this case the second term is irrelevant and is assigned a value of unity. For
example, for an integral scale eddy with a length scale ten times the grid, the mass transfer
into the reaction zone (averaged over many eddies) would be ten times the value for an eddy
with a length scale that is just the size of the grid.

Conservation of mass requires that the mass exchange rate into and out of the reaction
zone be identical so the properties can be evaluated at the thermodynamic state of either
the reactant stream (surroundings) or the product stream (reaction zone). For convenience,
they will be defined in terms of the reactant stream temperature and mass fractions. Using
the characteristic length and velocity scale arguments given above yields

mflame - (psurr) (L2X> (’U) _ XE Psurr
Mcell (pcell) <L3) L Peell

(2.235)

The standard integral scale estimate [11]| of the rate of energy supply to diffusive scale
eddies is

TurbulentKineticEnergy u 